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CRYSTAL STRUCTURES OF CUBIC
AND TRIGONAL YTTRIUM HYPOCARBIDES;
A DIMORPHICALLY INTERPHASED
SINGLE-CRYSTAL STUDY

by

M. Atoji and M. Kikuchi

ABSTRACT

The first single-crystal structure determination in the rare-earth
and related carbides is presented here for yttrium hypocarbide, which
exhibits two modifications: the high-temperature-disordered cubic struc-
ture having the composition YCy (x = 0.25-0.65), and the low-temperature-
ordered trigonal structure with the Y,C stoichiometry. Both X-ray single-
crystal and neutron powder techniques were employed in the structure
determination.

Our quenched single crystal has stabilized the transient state in the
midst of the cubic-to-trigonal transition, and consists of one cubic and four
trigonal crystals with the trigonal triad axis parallel to one of four cubic
triad axes. The domain sizes of these five crystals are different from one
another, resulting in highly complex diffraction patterns for which exceed-
ingly elaborate dimensional and intensity interpretations have been carried
out. The chemical compositions of the sample crystal were determined
accurately by means of the diffraction-intensit} analysis. Several new sta-
tistical and analytical methods have been derived and incorporated in this
work.

Our cubic structure, YCq 43, has been uniquely determined to be a
NaCl-type with a = 5.115 £ 0.002 A and with the carbon atom sites ran-
domly occupied. The trigonal Y,C shows an argti-CdClz-type configuration
with a = 3,617 £0.002 and ¢ = 17.96 + 0,01 A. The carbon atoms are
located at the nonparameter positions, and the Y atoms are found at the
one-parameter coordinates with z = 0.2585 0.0003. The Debye tempera-
tures obtained from the isotropic temperature factors are 230 + 10, 170 + 5,
and 233 * 6°K for YC, 4 (cubic), YCq 4 (cubic), and Y,C (trigonal),
respectively.

The cubic-to-trigonal transformation is characterized by a slight
yttrium-layer displacement along the triad axis and a migration of the car-
bon atoms to constitute a full and vacant layer sequence. Our multidomained
single-crystal structure demonstrates an illuminating example of interphase
and isophase boundary intercorrelation. Revelation of such interphased
structure is also the first example in this type of compound.



The cubic YC, structure has previously been postulated and the
trigonal Ho,C structure has also been reported, both thro.ugh the powder
technique. Our study has confirmed these results unambiguously and pre-
sents the structure parameters with a substantially higher accuracy, hervu?e
providing detailed insight into the chemical bonding and the phase-t.ran51t1'on
mechanism. A review of the related structures is given to emphasize s'tlek-
ing differences in the bond properties between the rare-earth and tra-msulon
metal carbides. The crystal structure of Sc,C, previously reportgd incor-
rectly as having a cubic superlattice, has been proved here to be isostruc-

tural to the trigonal Y,C.

I. INTRODUCTION

The course of this study spans nearly one decade, though quite inter-
mittently, during which we have gone through somewhat confusing steps in
reaching the ultimate goal: the crystal structure determination of yttrium
hypocarbide, YCy (x = 0.25-0.65). Independently, a French group (Deanetal.,
1964; Bacchella et al., 1966; Lallement, 1966) was working on several other
rare-earth hypoc_arfides, but their approach was not straightforward either,
As described later in detail, a major cause for the confusion in our case
arises from the fact that the rare-earth hypocarbide forms two closely re-
lated, yet different, crystallographic modifications which frequently coexist
through intricate phase-boundary interrelations. In fact, our "single crystal"
was composed of five single-crystal domains with mutually correlative axial
relations. A detailed chronicle of bewildering successions in our prolonged
endeavors is outlined in Ch. II, since it would be more than just instructive
to disciplines in crystallographic research. Chapter II is written very much
unmathematically in contrast to the following sections.

Both X-ray and neutron diffraction techniques were employed in the
structure determination. We started with the powder diffraction method,
for the single crystal was not then available. Later, accidentally, quite a
few good single crystals were found in an arc-melted sample. These crys-
tals were too small for neutron diffractometry, but just right in size for the
X-ray experiment. The single-crystal X-ray diffraction patterns were, how-
ever, unusually complex. Nevertheless, we have obtained an unambiguous
solution with which the neutron powder data were successfully interpreted.
Detailed procedures of the structure analysis and the results are described
in Chs. III through VI, where rather perplexed descriptions in Ch. II are
straightened out with a strong emphasis on mathematical and numerical

aspects.

The resultant structure has revealed not only some intriguing chemi-

cal bonding schemes but also has led to t'he suggestion of a sophisticated
mechanism associated with an order-disorder behavior of the carbon atoms.
In Ch. VII, these characteristics are discussed and the structures of the

related compounds reviewed.



The dimorphic structures of yttrium hypocarbide to which we have
referred are as follows: the NaCl-type cubic phase with a deficiency in the
carbon atom sites as represented by YCy (x = 0.25-0.65);* the trigonal (or
rhombohedral) phase with the ordered carbon atoms leading to the chemical
formula Y,C. When we discuss yttrium hypocarbide in general or a mixed
phase consisting of these two different structures, we use a generalized
symbol YC,. The cubic phase is frequently denoted by YCx (cubic) or by
the cubic YCy," whereas the trigonal phase is represented by Y,C, implying
a structurally definable carbon content. Also, we employ the terminology
cubic superlattice," which refers to the cubic structure having the unit-cell
length twice that of the cubic YC,.

The crystal structure of scandium hypocarbide has recently been
reported to have an ordered, superstructure NaCl-type cubic configuration
(Rassaerts et al., 1967). However, their X-ray powder data are more rea-
sonably interpretable in terms of the trigonal Y,C-type structure. Our
proposed structure is described in the Appendix.

This work was initiated as a part of our crystal- and magnetic-
structure studies of metal carbides. So far, the following results have been
reported: the crystal structures of CaC,, YC;, LaC;, LuC,, and La,C,, all
at room temperature; the crystal structures and paramagnetic scattering
analyses at room temperature of YbC,, Ce,C;, Pr;Cs, and Tb,Cj;; the crystal
and magnetic structures of CeC,, NdC,, PrC;, TbC,, HoC;, DyC;, and UC; in
the range from room to liquid-helium temperatures. Among those cited
above, by means of neutron diffraction, the magnetic spin alignment has been
found in CeC,, NdC,, PrC,;, TbC,, HoC,, and DyC, at low temperatures, and
their spin structures have subsequently been determined. Publications
related to these subjects are listed in the Refegences.

In all of the carbides mentioned above, the carbon atoms are dimer-
ized, so that the structure consists of the metal atoms and C, molecules.
The neutron crystal-structure analyses have revealed some interesting
systematic relations among the interatomic distances. A simple, yet typical,
example is that the intramolecular C-C distance becomes longer as the
metallic valence increases. The neutron magnetic analysis has harvested a
variety of new information: for example an abnormal valence state of Yb in
YbC, and of Ce in Ce,Cj; the crystal-field effects upon magnetically active
electronic levels; strong anisotropic exchange interactions in the magnetic
spin alignment.

We have been extending our program to the carbides containing
interstitial-type carbon atoms so as to provide further data about metallic
carbides, of which this report is an example. An elaboration of some topics

*This structure was proposed by the discoverer of this compound, Spedding et al., 1958.
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tsincluded inich, VIIL» It-shouldibe noted hete that Lallement (1966) has
carried out an extensive magnetic-susceptibility study on RECy.*

Recently, low-temperature neutron experiments have revealed the
existence of magnetically ordered phases in ErC,, Tb,Cs;, Ho,C;, and the
hypocarbide of Th. Here, the Tb hypocarbide is isostructural to YCx.

Both the crystal- and magnetic-structure analyses of ThCy have been ham-
pered because only powder diffraction data have been available. This diffi-
for the crystal structures of YCy have uniquely been

culty no longer exists,
The results of TbCy will be published in due

determined as reported here.
course.

The statistical errors of the measured quantities in this report are
expressed in terms of the standard deviation unless otherwise noted.

*
The symbol RE is used to indicate rare earth.



II. CHRONICLE OF STUDIES

A. Ames Period (1958-1960)

About 1955-1957 at Iowa State University, Ames, K. Gschneidner, Jr.,
under the supervision of F. H. Spedding and A. H. Daane, was working on his
thesis subject, the rare-earthand carbonsystem. Their study (Spedding et al.,
1958) revealed, among other new observations, the existence of the hypocar-
bides of yttrium and of the heavy rare earths from Sm to Lu, all of which
are frequently represented here by REC,. Since x had a value in the vicinity
of 1/3, Gschneidner called them the tri-rare-earth carbide. Ourterminology,
hypocarbide, is due to Lallement (1966). Some authors employ "subcarbide"
for the same. Our generalization includes yttrium among the "rare earths."

Spedding et al. (1958) have reported that the X-ray powder diffrac-
tion data of these hypocarbides could be reasonably interpreted on the basis
of a face-centered cubic lattice of the rare-earth atoms. The X-ray scatter-
ing powder of carbon is much smaller than those of rare earths. Nonetheless,
the X-ray powder analysis on the hypocarbide of the lightest metal in the
series, YCy, could distinguish whether the carbon atoms occupy the octahe-
dral or tetrahedral interstitial holes in the yttrium matrix. It turned out
that the former case is strongly favored. Hence, the resulting structure is
of the NaCl type with randomly distributed vacancies in the carbon atom
sites, or simply another Higg's carbide. However, Gschneidner's photo-
graphs had a number of very weak extra reflections which were assumed to
be due to some unknown impurities. These extra reflections very likely
originated from the coexisting trigonal Y,C, as described later.

For locating the carbon atoms, the neutton diffraction technique
offers a powerful tool, since the neutron scattering amplitude of carbon is
comparative to those of rare earths. The neutron diffraction studies of the
rare-earth carbides including YCy and TbCy were then initiated. With the
samples provided by Daane and Gschneidner, Atoji, then also at Jowa State,
made several brief visits to Argonne and Oak Ridge during 1958-1959 for
carrying out neutron experiments at these National Laboratories.

The neutron powder patterns of the rare-earth hypocarbides clearly
exhibited several prominent extra reflections, some of which appeared to be
indexable by doubling the X-ray cubic unit-cell dimension. The neutron pat-
terns were of low resolution, and the overlapped peaks were resolved by
means of a rather elaborate curve-fitting technique (Atoji, 1961; Atoji and
Williams, 1961). A set of observed data was then subjected to numerous
trial structures. Symmetries of the trial models covered from cubic down
to triclinic by placing the carbon atoms in various ordered or disordered
manners. None of the models rendered a completely satisfactory agreement
with the observed data. The reason is now clear. The observed pattern is

11
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composed of both the cubic and trigonal reflections (see Ch. VI), whereas
all the trial analyses were carried out on the assumption that a single phase

existed.

B. Argonne Trial Period (1960-1965)

The program moved from Iowa State to Argonne in 1960 following
the transfer of Atoji, who had been actively involved in the construction of
an automatic neutron diffractometer, particularly during 1960-1962. Never-
theless, about a dozen additional single-phase models were examined, with
emphases on the cubic, trigonal, and hexagonal configurations. A cubic
model which seemed to give the best agreement was reported at the Villanova
Conference of the American Crystallographic Association (Atoji, 1962a). This
model cannot be correct because of the single-phase assumption, but it hap-
pened to be very much identical to the reported structure of Sc,C published
in 1967 (see Appendix for our reinterpretation on the Sc,C data).

In early 1963, an X-ray diffraction unit was acquired. Also, the new
neutron diffractometer, with a high peak resolution, was readily available,

Consequently, complete rework on YCy and TbCy was initiated, using
both X-ray and neutron methods. The samples were freshly prepared by
J. L. Moriarty of the Lunex Company. Firstly, the X-ray powder photographs
of the Lunex TbCy were taken. The X-ray powder lines were markedly
spotty, suggesting of fair-sized single-crystal grains in the Lunex arc-melted

buttons.

At about this time, Yves Jeannin was visiting Argonne from France.
Jeannin and Atoji selected a small sample piece from the crushed ThC o
button and inserted it into a thin-walled pyrex capillary. The capillary was
then mounted on an X-ray precession camera, and the diffraction pattern
was examined to see whether or not a good single crystal had been obtained.
The process was patiently repeated. More than a score of the capillaries
were made, and nearly a hundred of the lining-up diffraction patterns were
taken. About a dozen single crystals large enough for the X-ray method were
found. However, all gave blurred diffraction spots, implying large internal
strains. Thermal annealing could not relieve the crystals from strains.

This stage lasted nearly two months (May-July, 1963). It seemed
that a refined, improved powder method would be the best approach.
Jeannin finished his visiting assignment around this time, and D. Tressider
started to assist the program.

Consequently, the neutron powder diffraction patterns of YCy and
TbCx were taken again, using the high-résolution diffractometer. Also, just
for checking the purity, the Lunex YCx was examined by the X-ray method.
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Surprisingly, the very first X-ray sample happened to be a good strain-free
single crystal (Oct 1963). It was subsequently found that the Lunex YCy
buttons are full of good single crystals having a size almost ideal for the
X-ray technique.

A single crystal of YCy having approximately cylindrical shape was
selected and aligned on a precession camera. Strong reflections employed
for lining up the crystal clearly indicated a cubic symmetry, and the mea-
sured lattice constant was in good agreement with Gschneidner's value
(Spedding et al., 1958). Then a set of diffraction photographs for several
principal reciprocal-lattice zones were taken with different time exposures.

The long-exposure films showed a number of weak additional reflec-
tions which appear to lie midway between the strong reflections, so that the
NaCl-type cubic cell dimensions should be doubled in all directions. How-
ever, the intensities of these additional reflections exhibited a much lower
symmetry than cubic. We shall tentatively call these weak superlattice-like
reflections "noncubic reflections".

So as to determine the symmetry associated with the noncubic reflec-
tions, the experiment was extended to other zones. Even with a very long
exposure, the noncubic reflections were still weak in intensity. For some
zones, they exhibited certain pseudosymmetries, such as a mirror plane,
with a few violating reflections. For some other zones, there is hardly any
symmetry at all. Hence, the symmetry of the noncubic reflections appeared
to be as low as triclinic. Consequently, almost all accessible zones including
the higher reciprocal-lattice levels were carefully examined using the
precession-camera technique. This complete survey experiment took nearly
three months (Nov 1963 to Jan 1964). .

Diffraction-intensity measurements were made at least twice for each
reflection on different occasions. The number of individual visual measure-
ments was as many as 9,000. The resultant intensity values were then
intercorrelated using a statistical averaging technique. A final set of inten-
sity data was thus obtained.

Around this time, an attempt was made to obtain more precise lattice
constants. The measurements involved the distances among the diffraction
spots. Astonishingly enough, it was found that some noncubic reflections
did not lie exactly at the midpoint between the strong cubic reflections. The
shift from the cubic superlattice position is very small but is detectable
under careful observation.

It was then clear that to find the cause of this irregularity the mea-
surement had to be carried out on these small shifts, both in its magnitude
and direction. However, it was not an easy task to locate the centroid or
fiducial edges of those weak noncubic reflections.
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An optical densitometer was used to see whether precise measure-
ment could be carried out. The densitometer trace was of disastrously poor
quality because of low signal-to-noise ratio. A traveling micro_scope was
also tried out; similar difficulty was encountered. Eventually, it w‘as found
that a staged, low-magnification comparator was best suited for this purpose,

The strong cubic reflections were used as the fiducial points in measuring

the shift magnitude.

The magnitude of the shift to be measured was in the range from

0.02 to 0.7 mm, and systematic correlations among the shifting modes could
be made only when the accuracy of the measurement was better than about
+0.05 mm. Estimated maximum error in the individual visual measurement
was as large as 0.3 mm. Hence, there was no choice but to make as many
measurements as possible in order to decrease the statistical error. Pains-
taking measuring work was then pursued. Approximately six measurements
on one specific distance were carried out on different occasions. More than

one thousand measurements were made,

In the interim, the Lorenz-polarization correction and the interzone
correlations on the observed intensities were being carried out using the
program written by H. G. Norment (1962). In the calculation of the Lorenz-
polarization factor, the noncubic reflections were assumed to be at the cubic
superlattice points. The shifts are so small that the error caused by this
approximation is by no means significant.

There laid another high hurdle to conquer. The computer program
contained a major error when applied to the precession case. Communi-
cations were exchanged between Norment and Atoji regarding this matter,

A presumably amended program was sent to Argonne from J. Karle of

Naval Research Laboratory. Norment had made further corrections.

J. Gvildys of Argonne's Applied Mathematics Division helped with reprogram-
ming. Finally, the correct computation was completed around July 1964 after
a few months of struggling.

In parallel to this program, the neutron diffraction studies of other
rare-earth carbides and related compounds were actively pursued. Because
the problems on YCy seemed unattractively complicated and because other
problems were offering more exciting results, interest in the YCy problem
began to fade. Nevertheless, the intention of completing the subject matter
was never discarded,

In the latter part of 1964, C. P. Kempter of Los Alamos Scientific
Laboratory called Atoji and asked about the progress on YCy and i o] & 5
Also, Kempter stated that a French group had just published a paper on the
structure determination on RE,C (Dean et al., 1964) which yet could not
explain the powder X-ray pattern obtained at Los Alamos. Now, the Argonne
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group became aware that there were at least three groups working on essen-
tially the same subject. The Argonne group was, however, the only one who
had access to the single-crystal data.

This competition did stimulate the Argonne activity. During 1965, a
considerable effort was made to find systematic relations among the shifting
modes of the noncubic reflections. The distance measurements were repeated
from time to time so as to improve the accuracy. Finally, a relation was
found and was included in a discussion of the generalized reciprocal lattice
(Atoji and Gvildys, 1966). At that time, the shifting characteristics were
thought to be caused by a stacking disorder or the satellitic effect of an anti-
phase domain structure.

In the meantime, the French group corrected their own error in the
structure determination of Ho,C by doubling one of the unit-cell dimensions
(Lallement, 1966). The positions of the carbon atoms were determined by
means of neutron diffraction (Bacchella et al., 1966). The resultant struc-
ture is an ordered structure having a trigonal symmetry. All of the French
results were entirely based on the powder data.

The Argonne group had suspected that this structure might still be
incorrect, since the single-crystal patterns did not confirm the French
results in the earlier stage of our interpretation. However, our final
structure of Y,C obtained from the single-crystal data turned out to be
essentially a reconfirmation of the French result that was deduced from
the powder data alone. Fortunately, as described later, our study has
yielded a number of additional, unique structural informations with sub-
stantially higher accuracy.

C. Argonne Final Period (1966-1967)

Kikuchi started working on this subject in 1966. Still retained was a
presumption that both cubic and noncubic reflections are originated from one
crystal, Firstly, the small shifts of the noncubic reflections were neglected,
and it was intended to include them in a refining process. Along this direc-
tion, all conceivable models were again tried out more systematically. The
indices were converted to the hexagonal and rhombohedral symmetries to
see whether or not some accidental extinctions observed in certain zones
give some hint as regards the structure interpretation. This approach led
to no place. In fact, the accidental extinctions mentioned above were fre-
quently found to contradict one another. Also, possibilities of stacking faults
and the antiphase domain structure were examined more thoroughly than
before. A few months passed by without any conclusion.

When the intensity measurement was being carried out in 1963, it
was noticed that the size of the diffraction spot of the noncubic reflection
is somewhat smaller than the strong cubic spot. Therefore, it was always
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in our mind that the noncubic reflections might have originated from a crys-
tal different from that producing the cubic reflections, Certain twinning
models were tried out, but not very thoroughly. Also, it was thought that
the smaller sizes of the noncubic reflections may be due to the fact that
these reflections are slightly off from the reciprocal plane containing the
strong cubic reflections, This interpretation was also futile in its results.
It then became obvious that the interpretation should have to start from the
shifting-mode analysis which had thus far been stubbornly avoided. Subse-
quently, it was decided to undertake the shifting-mode analysis more

intensively.

Subsequently, a number of additional interreflection distances were
repeatedly measured and also those measured previously were re-examined.
Various statistical treatments were tried to find possible systematic modes
among the measured shift values.

In April 1967, a systematic relation was finally found in the shift-
vector maps. A detailed account of this is given in Ch. V.A. Eventually,
it became clear that our "single crystal" is composed of one cubic crystal
and four trigonal crystals with definite intercrystal axial relations. The
subsequent structure analysis was relatively straightforward, and its details
are given in Chs. IV through VI.
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III. EXPERIMENTAL

The sample was prepared by arc-melting a compressed mixture of
99.9% pure yttrium metal filings and powdered spectroscopic graphite elec-
trodes. The mixing ratio was 95.69 and 4.31 w/o for yttrium and carbon,
respectively, corresponding to the chemical formula Y;C. The product is
brassy metallic and is so brittle that it can readily be crushed into powders.
It decomposes slowly in moist air, liberating various hydrocarbon gases.
Although the decomposition rate of YCx is much slower than that of CaC,,
all preparatory and handling procedures were carried out in a very dry,
inert-gas atmosphere.

The chemical analysis of arc-melted buttons gave 94.0 + 0.2 and
4,9 + 0.1% for Y and total C, respectively. The free carbon was less than
0.1%. The method of Frazer and Holzmann (1960) was incorporated in the
micro determination of carbon. The spectroscopic analysis revealed the
following impurities, in %: Al, 0.08; Ti, 0.041; Er, 0.03; Cu, 0.02; Na, 0.02;
all other metallic impurities, 0.03%. Some of these impurities apparently
came in during the sample preparation and would be too small a quantity to
play a significant role in our subject matter. To recapitulate, the final
product as a bulk may be represented by YCg 39 or ¥; ¢C.

Single crystals mined out from the arc-melted buttons were examined
by the X-ray precession-camera technique. The size of the crystal selected
was approximately a cylinder, 0.17 mm in diameter and 0.22 mm in length.
The cylindrical axis was nearly parallel to the [170] axis of YCx (cubic).

Precession photographs were taken with the use of MoKa radiation.
The [170] axis of YCx (cubic) was set parallel to the spindle or horizontal
axis of the precession camera. A precession a'ngle of 30° was used mostly,
but smaller angles, 25 and 21°, were also employed so as to enhance the
intensities of certain reflections, utilizing different angular dependencies of
the Lorenz-polarization factor. Successive, timed exposures were made of
each zone. Because of an extensive intensity range to be measured, the typi-
cal time exposures were 0.25, 0.5, 1, 2, 4, 8, 16, 24, 32 and 48 hr.

Intensities were estimated visually with the aid of standard, timed
scales prepared from single-crystal reflections using the sample crystal.
The intensity range measured was as wide as 1 to 1000 in a relative scale.
By means of Norment's computer program (1962), Lorenz and polarization
factors were applied, and the structure factors were thus obtained.

The absorption correction to the precession data (Burbank and Knox,
1962) and the spreading and splitting effects of the diffraction spot due to the
Ko, and Ka, components happened to be very much reciprocal to each other.
Hence, no absorption correction was applied. Also, no significant extinction
effect, both primary and secondary, was detectable.

The experimental procedure in the neutroncase is describedin Ch. VL
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IV. ANALYSIS ON CUBIC YC,

A. NaCl-type Model

As mentioned in Ch. II, our "single crystal" diffraction pattern con-
sisted of the cubic and trigonal reflections. The structure analysis of the
cubic crystal is very elementary. Despite this, we shall present the ana-
lytical procedure in considerable detail, since it is based on the first single-
crystal data ever obtained in the cubic rare-earth carbides.

Let us assume a NaCl-type structure for the cubic YCx. We assume
that the carbon atoms are randomly absent so that the structure factor is
obtained by multiplying the carbon contribution by an occupancy factor x
Hence, the NaCl-type structure factor per unit cell for YCy (cubic) is simply

given by
F = 4(fy*xfc), (1)

where fy and f; are the X-ray scattering amplitudes of yttrium and carbon,
respectively; the positive and negative signs are taken when the (hk/) in-
dices are all even and all odd, respectively.

The observed and calculated structure factors are intercorrelated by

sin 6\?
BE e = E exp{—B(T) } = B (2)

where K is the scale factor and the exponential function is the Debye-Waller
temperature factor.

The least-squares refinement using the logarithmic conversion of
Eq. (2),

In (F/Fops) = InK + B(SinTe)z, (3)

was carried out for determining the best values for K and B at a given

carbon occupancy parameter x. The observed structure factor, Fopg, Was
obtained from a weighted average of at least a dozen independent measure-
ments. The calculated structure factors were computed using the Hartree
atomic scattering factors (Cromer et al., 1963), which are listed in Table I

An overall statistical discrepancy between Fpohs and F]c is mea-
sured either by

»

R, = Z W'KFObS Ly Fcalc'/z WKIFObSI (4)



or by

R; = ) W(KFobs'Fcalc)z/ZWKzFébs. (5)

The latter is employed preferably here because of its direct relation to the
least-squares residuals.

TABLE I. Observed and Calculated Structure Factors per Unit Cell for
the Cubic YCg 4 The calculated values for the case where the carbon
atoms are placed randomly at the octahedral interstices are designated
as "NaCl model," and those with the carbon atoms randomly at the tetra-
hedral interstices are denoted as "CaF, model." The standard deviations
on the observed data are given. The atomic scattering factors employed
are listed so as to facilitate our discussion in the text.

Fecalc Fcalc
Indices (NaCl model) (CaF, model) Fobs fy fc
111 113.1 112.0 113.3 £ 4.8 31.47 3.84
200 120.0 107.8 125.9 £ 2.5 30.36 3.47
220 99.3 99.3 97.3 £ &1 26.99 2.59
311 80.7 84.2 81322 25.10 2.24
222 84.5 717.8 82.2 3.2 24.58 2.15
400 74.0 74.0 77.2 £12.5 22.97 1.94
331 60.3 62.8 6z3x1.2 21.97 1.84
420 63.3 58.5 61.3 £ 2,2 21.70 1.81
422 55.8 55.8 59.3 1.3 20.55 1.71
511 47.3 49.2 46.0 £ 1.1 19.84 1.66
333 47.3 49.2 48.0 + 2.4 19.84 1.66
440 44.4 44 .4 473511 18.83 1.59
531 37.8 39.4 * 38.0 £0.6 18.30 1.57
600 40.0 36.9 42.3%2.1 18.19 1.56
442 40.0 36.9 39.0 £ 1.1 18.19 1.56
620 35.8 35.8 34.0 £ 1.3 17.47 1.52
533 30.6 31.9 32.5%1.1 17.07 1.50
622 32.2 29.7 34.0 £ 0.9 16.87 1.49
444 29.2 29.2 26.2%1.0 16.38 1.46
711 24.7 25.8 21.6 £0.8 15.90 1.44
551 24.7 25.8 24.3 £ 0.7 15.90 1.44
640 26.2 24.1 28.0 £ 1.6 15.81 1.43
642 23.7 2.1 25.2r% 1.9 15.34 1.41
553 20.1 21.1 22.3%0.9 14.97 1.39
820 17.5 16.0 20. 11 13.99 132
644 17.5 16.0 MIEI2 13.99 1.32
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A plot of R, as a function of x ios nearly a parabola having a mini-
mum at x = 0.44, for which B = 1.97 A* " This cirvel s shows o Figas -l
as ALL REFLECTIONS case. However, at low scattering angles, the over-
lapping effect of the £ = 2n trigonal reflections is small yet appreciable.
The geometrical analysis suggested that the intensities of the first six re-
flections given in Fig. 2 and Table I were slightly overestimated owing to
the overlapping. When these six reflections were discarded in the analysis,
the R, minimum occurs at x = 0.48, with B = 1.85 A%, The curve labeled

4O—TTTT T T T

R2 (ALL REFLECTIONS),

o Fig. 1
' Determination of the Carbon Occupancy Parameter x in the
Cubic YCy. The discrepancy factors Rg obtained from the
L 6.0 least-squares refinement are plotted against various x values.
The Rg (LOW ANGLE) curve is obtained from the first six re-
flections in order of decreasing scattering angle, since the
g intensities of these reflections are slightly overestimated due
to inclusion of the overlapping, weak trigonal reflections.
All but these first six reflections are free from the trigonal
reflections and lead to the Rg (HIGH ANGLE) curve. For the
Rg (ALL REFLECTIONS) curve, the LOW and HIGH cases are
treated as a whole.

Rz (ALL) x 103

R (HIGH ANGLE)

Rz (LOW) & Rp (HIGH) x 103
Vg
o
T

Rz (LOW ANGLE)

x 0

o, 1.0
: NUMBER OF CARBON ATOMS (YC,) 121-2695

Fig, 2

A Graphical Representation of Eq. (3). Solid
line is obtained from the least-squares pa-
rameters for the HIGH ANGLE reflections of
YCy, 48 (cubic) (see Fig. 1). Note that the
first six reﬂ%ctions with (sin 6/)‘)2 smaller
than 0.175 A2 lie consistently below the
solid line. This is due to small contribu-
tions from the overlapped % = 2n trigonal
reflections.

Log (F/Fopg) (RELATIVE SCALE)

121-2686 Rev. 1 (aip2)?* (2-2)



as HIGH ANGLE in Fig. 1 represents this case. The R; curve for the first
six reflections is given in Fig. 1 as LOW ANGLE case. These LOW ANGLE
values, x = 0.48 and B = 1.67 1&2, are almost identical to the HIGH ANGLE
case except for the different scale factor. The minimum discrepancy fac-
tors are R; = 7.5, 4.4, and 2.1%, and R, = 0.63, 0.22 and 0.072%, for ALL
REFLECTIONS, HIGH ANGLE, and LOW ANGLE cases, respectively. In
this sequence, the ratios among the scale factors are 0.950, 1.000, and
0.942.

An example of the least-squares fitting is shown in Fig. 2. The
relative intensity contribution of the overlapping trigonal reflections was
found to be nearly the same in all of the first six reflections. This mani-
fests itself in the LOW ANGLE and ALL REFLECTIONS parameters being
very closely equal to those for the HIGH ANGLE case (except for the dif-
ferences in the scale factor).

The best set of parameters thus obtained are x = 0.48, giving the
formula YCj, 4 and B = 1.85 A% No strong evidence as regards the differ-
ence in the thermal parameters of Y and C was detected. The final values
of Fealc and Fopg are listed in Table I, where the data for the first six re-
flections were obtained using the best parameters for the LOW ANGLE case,
and the remainders were computed using the HIGH ANGLE parameters

B. Other Models

Let us now compare the NaCl model with the CaF; model, the latter
of which places the carbon atoms in the tetrahedral interstices of the yttrium
matrix. We call the NaCl and CaF, models the octahedral and tetrahedral
cases, respectively. The least-squares resultd for the tetrahedral case are
also tabulated in Table I. The overall discrepancy factors for the tetrahedral
case are Ry = 5.7% and R, = 0.44%, whereas for the octahedral model R; =
3.7% and R, = 0.15%. The discrepancy factor favors the octahedral case, but
this is hardly conclusive. This small difference between the two models is
due obviously to a small scattering amplitude of carbon in comparison with
the yttrium scattering amplitude (see Table I).

A firm support for the octahedral model could be found through the
analysis given below. For a reflection with h odd, k odd, and £ odd, the
difference between the structure factor per unit cell of the octahedral model
and that of the tetrahedral model is equal to -4xfc. Hence, we have

% {Fcalc(octahedral) - Fcalc(tetrahedral)} = ¥ (-4xfc) = -120, (6)

where the summation is carried out over the all-odd index reflections in
Table I excluding the first six reflections. Now,

21
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D {Fobs = Fcalc(octahedral)} =y lE=w0; (7)

which indicates almost complete agreement on the basis of the octahedral
assumption. On the other hand,

Z{Fobs = Fcalc(tetrahedral)} = =118, (8)

which is essentially equal to -120 of Eq. (6), lending strong support to the

octahedral model.

We extend this type of calculation to the reflections with (h = 4n+2,
k=4n+2, [ = 4n+2), those with (h = 4n+2, k = 4n, £ = 4n), and their equiva-
lent reflections. For these reflections, we have

Z‘{Fcalc(octahedral) = Fcalc(tetrahedral)} = z 8xfc = 144 (9)
This is now compared with

Z{Fobs - Fcalc(octahedral)} =S (10)
and

¥ {Fobs - Fealc(tetrahedral)} = 145. (11)
Again, an excellent endorsement of the octahedral case results. The octa-
hedral and tetrahedral models are indistinguishable for the reflection types

(h=4n,k=4n, L =4n)and (h=4n, k=4n+2, £ = 4n+2). In this category,

Z{Fobs A FcaLlc(C’Cta}"‘“h'al)]’ = Z{Fobs = Fcalc(tetrahedral)} =53 (e

The ideal value for Eq. (12) is zero and the observed small value can well
substantiate this.

Similarly, other probable models, ordered or disordered in the car-
bon distributions, could be discarded as well, thus conclusively affirming
the NaCl-type structure for the cubic YCy.



V. ANALYSIS ON TRIGONAL STRUCTURE

A. Multiple Domain Structure

In order to facilitate the description, we have employed the termi-
nology "trigonal" prematurely in many occasions. Needless to say, in
order to establish the crystal symmetry, one has to determine not only the
geometry of the crystal lattice, but also the symmetry in the diffraction in-
tensity distribution. The latter comes in much later in this chapter, but the
"trigonal" term has been and will appear frequently before the final sym-
metry determination.

Three typical precession photographs are given in Figs. 3(a), 4(a),
and 5(a). Their explanatory diagrams are shown in Figs. 3(b), 4(b), and
5(b), where small displacements of the trigonal reflections from the cubic
superlattice points are represented figuratively by means of arrows which
we frequently call the shift vectors.

Fig. 3(a)
Precession Photograph (zero-level) of the Cubic
[h, k, -(h +k/2)] Reciprocal-lattice Plane. Both
the cubic and wigonal diffraction spots are seen
here, but the latter spots are hardly visible. All
trigonal reflections here are originated from the
Type IV domain (Ref. Fig. 7).

121-2621
Fig. 3(b) 04 (00T 4ri-
Explanatory Diagram for Fig. 3(a). Small l 1 l
circles represent the cubic reflections. Per- {
tinent principal axes of the cubic and trigonal 3 I 1 1
systems are shown. Arrows point out the :
directions of the shift of the trigonal reflec- . »

tions from the points corresponding to the
cubic superlattice. The length of an arrow R

is proportional to the amount of the shift and = : ) . Al i~
is enlarged ten times the distance scaled for T

the cubic reflection pattern. The fiducial
scales are given accordingly. The arrow with
shaded tip and shaded shaft represents the
shift vector of the Type IV domain. Also,
the trigonal reflections with 2 odd are our
concem here, since those with 2 even are . o -
overlapped with the cubic reflections or are 5 é T I T
too weak to give reliable data.

121-2689
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Fig. 4b)

Explanatory Diagram for Fig. 4(a). The trig-
onal reflections belonging to the Type II and
III domains appear here. Shaded arrows rep-
resent the shifting modes of the Type II do-
main and open arrows are for the Type III
domain. The trigonal reflections with £ odd
are treated here, The notations A-1, A-2,
csey B=1, B=, ..., L{T11)oyp, and (003)yq are
given in conjunction with the lattice-constant
determination of the trigonal structure as il-
lustrated in Figs. 8 and 9. The shift-vector
distribution exhibits two twofold axial sym-
metries.
main size, the intensity distribution shows no

However, because of different do-

twofold symmetry, but a center of symmetry
(see text).

121-2687 Rev.

Fig. 4(a)
Precession Photograph (zero-level) of the Cubic
(hhg) Plane Showing Both the Cubic and Trigonal
Reflections. The cubic reflections are generally
swonger in intensity and larger in size in com-
parison with the trigonal reflections.

121-2620
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Fig. 5(a)
Precession Photograph (upper-level) of the Zone
Corresponding to the (h,k, -1/2) Reciprocal-
lattice Plane of the Cubic Phase. Here, no cubic
reflections appear and the diffraction spots origi-
nate from all four trigonal crystals. Also, all
trigonal reflections observed here should satisfy
£ odd in (hkL).

121-2622

L] w b
e g e
4 + 4 + 4 + i
- . e
Fig. 5(b) ot g F Ogat Pl st 48 - S G
2 : : = - O ‘ ’
Explanatory Diagram for Fig. 5(a). The shading 5 25
- ES - . - - . - |
scheme of arrows belonging to the domains 11, |
e d -t * + o
IlI, and IV are explained in Figs. 3(b) and 4(b).
An arrow for the Type I domain is shown as a - I . el 2
bottom-shaded arrowhead with open shaft. A “ \
large circle encompassing the origin confines a - = ¢ ¢ * -
blind region, where no reflections are recorded - o - o - - . -
owing to the geometrical screening-out in the ST ¥ i -
3 s * - * . * . * - *
upper-level precession setting. . “ -

SCALE FOR SHIFT 1 T T T | ALE FOR FiLm |

A e | Lt i ) 5 o J

121-2688 i s

The vector diagrams shown in Figs. 3(b), 4(b), and 5(b) are for the
trigonal reflections with £ odd in their indices (hk £), since they do not
overlap with the cubic reflections. The trigonal reflections with £ even
appear very close to the cubic reflections, and they are inseparable from
the cubic reflections at low scattering angles. At high scattering angles,
the trigonal reflections with { even start to separate out from the cubic
reflection. However, the intensity of the L-even trigonal reflection fades
away very rapidly as the scattering angle increases and becomes unacces-
sible to accurate measurement. This situation is illustrated in Fig. 6.
Because of reasons given above, we deal with the trigonal reflections with
) odd only unless otherwise noted.
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DISTANCE ON FILM (mm)

0 20 40 60
250—T—T—T—T T T
. —o— £:0dd Fig. 6
\“\\ ‘ﬂ,zl_F_l_:j":::““ General Characteristics of the Scattering -angle Dependence of
_ 200F A\ IFI=6fycos2m £aZ | the Intensities of the £ Even and £ Odd Reflections of YoC
E l‘g.“ B Are Shown Here Using the Structure Factors per Unit Cell for
e ‘\ the (002) Reflections. The final parameter set was employed
5— 150 |- 6 in the calculation. The £ even reflections are much stronger
2 A than the £ odd reflections at low scattering angles. In this
:E: “‘» region, the £ even reflections are inseparable from the cubic
@ 100 X q reflections. The intensities of % even and £ odd become
o L comparable near £ = 15, around which the £ even reflections
= tend to separate out from the cubic reflections. For £ > 15,
~ sof *‘~‘ J the £ odd intensities become considerably stronger than the
L even intensities. The radial distance on the precession film
ol L
£in(0£) 0 5 10

is also given as a reference to the diffraction patterns shown in
520 25 30 Figs. 3(a) through 5(b).

sinB/A&D G 52 04 06 o8 121-3330Rev.1

The topological analysis of the symmetry characteristics in the

shift-vector distribution has played a most critical part in the structure
analysis, as described in Ch. II.

Here, one may surmise the difficulty we
encountered by inspecting Figs. 3(a) through 5(b), which represent a tran-
sition from a simple case to a more complex case.

In some other zones,
the vector maps are by far more complex than the one shown in Fig. 5(b).

These exceedingly complex cases are difficult to illustrate and are not
shown.

As regards the shifting mode, it was immediately seen that the mag-
nitude of the shift is larger, on the average, as the scattering angle in-
creases. In the reciprocal planes containing the origin of the reciprocal

lattice, both the direction and the magnitude of the shifting vector exhibit
two twofold axial symmetries.

However, no such symmetry exists in the
intensity. These regularities were all we could find and provided no help
in revealing the origin of the shifting.

A breakthrough came about when we found that the direction of the
shift is parallel or antiparallel to the cubic body-diagonal axes or their

projections onto the reciprocal zone of specific concern. This eventually
revealed multidomain axial relations which could explain unambiguously

all the observed shifts and intensities.

This multidomain structure is
described below.

As described in Ch. IV, our "single crystal" consists of one cubic
single crystal and four trigonal single crystals. The axial interrelations
among the cubic crystal and the trigonal crystals are illustrated in Fig. 7,
where the [001] axes of four trigonal cr;rstals are distinguished by means
of subscripts: tri-I, tri-II, etc. The orientational correlations between
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the cubic crystal and the trigonal crystal I are as follows: (a) the (111)
plane of the cubic crystal lies parallel to the (001) or c-plane of the trigo-
nal crystal; (b) the cubic [1T10] axis is parallel to the trigonal [110] axis.
The criterion (a) defines the coherent interphase boundary between the
cubic crystal and the trigonal crystal I (see Ch. VII.C). The c-axes of the
trigonal crystals II, III, and IV are parallel to the [T11], [1T1], and [117]
axes of the cubic crystal, respectively.

[004i-z  [001) 4ri-m

[001]cun
[”']cub [T”]cub
[001] yri-m I I
(M eun
Fig. 7
b ! 8
i Axial Relationships among the Trigonal Crystals
) Relative to the Cubic Crystal. The cubic axes
| have subscripts "cub.” The trigonal c-axes of
i Type-l, -II, -III, and -IV domains are given
ek 1 with the subscripts tri-I, tri-II, tri-III, and
" [010)cun ri-1V, respectively.
~™
[100] cun . [1T)cun

[004ri-= 121-2685

We call the volume occupied by the trigonal crystal I the domain of
Type I, and this nomenclature extends to other domains. The volumes of
four domains are different from one another, causing a dismaying asym-
metry of intensity in the precession photographs.

B. Precision Determination of Lattice Paramgters

Small shifts of the trigonal reflections as shown in Figs. 3(b), 4(b),
and 5(b) imply that the dimensions of the trigonal unit cell are approxi-
mately given by atrj = écub/ﬁ and ctrj = 2V/3 acub, Where the sub-
scripts abbreviate trigonal and cubic. The precise determination of the
trigonal lattice constants was not an easy task, since the trigonal reflec-
tions are generally very weak (see Ch. IL.B).

The shift-vector maps Figs. 3(b), 4(b), and 5(b) show that the
shifting directions are along the cubic principal axes. In some other zones,
the vector directions have no simple relations with the principal axes.
Nonetheless, a relatively straightforward deduction from the shift-vector
analysis was that the a axis of the trigonal crystal should be very closely
equal to the (110) spacing of the cubic crystal. The statistical numerical
treatment to to a(trigonal) = 3.617 * 0.002 A, which turned out to be, within
the accuracy cited above, equal to the d-spacing of the cubic (110) planes.

The ¢ lattice constant of the trigonal phase was determined as fol-
lows. For instance, we select the shift-vector distribution of the Type-II
domain as shown by the shaded arrows in Fig. 4(b). The shaded arrow
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vectors are parallel or antiparallel to the cubic [ill] axis. The vectors
labeled as A-1, A-2, A-3, etc., are pointing toward the cubic reflections
(111), (222), (333), etc., respectively. The magnitudes of the shifts of A-1,
A-2, and A-3 are plotted in Fig. 8. Because of a large uncertainty, the
shift magnitude of the reflection A-4 is not given in Fig. 8. The trigonal
indices of A-1, A-2, and A-3 are (115), (227), and (339), respectively.
Therefore, in Fig. 8, the points representing the shift magnitudes of these
three reflections should lie on a straight line. The intercepting point be-
tween this line and the trigonal [001] axis gives the shift magnitude of the
trigonal (003), A;, as illustrated in Fig. 8. Likewise, the data on B-1
through B-6 led to the A, value [see both Figs. 4(b) and 8]. A set of A
values was thus obtained.

(00T yi-m
i

0.8

MAGNITUDE OF SHIFT (mm)

(003) 7

-0.2 —L_ L — - - -+
(333)cyp (222)yp (TIMeyy 0001y (1TNgyp (222)cyp (333)cup

0T eyp

121-2684 Rev. 1

Fig. 8. Observed Magnitudes of the Shifts for the Domain-II Trigonal Re-
flections Which Appear in the Fig. 4(b) Zone Are Treated Here.
The designations A-1, A-2, etc., are referred to the reflections
with the same designations in Fig. 4(b). The statistically aver-
aged shift values Ay, Ag, etc., are correlated in Fig. 9.

A least-squares treatment has been employed in obtaining the pa-
rameters of the straight lines of Fig. 8. As a corollary, for instance, the
shift magnitude A; is more reliable than the data for (0,0,15) alone. Now,
these A values referring to respective /'s in (00£) are shown in Fig. 9
which demonstrates excellent linear relationships in each A series. The
AL value as given in Fig. 9 was obtained with a high accuracy because of
the large number of observed data employed in the data deduction. The
AL value has the following relation with L(111)cyb, representing the aver-
age distance on the film between the cubic reflections, (hk /), and
(ht1, k%1, g£1); L(ill)cub + AL = L(006);,;, where L(006);,; is the dis-
tance between (hk /) and (h, k, £+ 6) on the film. The observed results are
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given in Fig. 9. The ratio between L(I11)cyp and L(006)¢r; is 1.0134 £
0.0009, which gives the ratio between the interplanar spacing for the cubic
(111) planes and that for the trigonal (006) planes.

0.8

0.6

0.4

0.2

MAGNITUDE OF SHIFT (mm)
o

the experimental errors described above.

AL = -0.191 £ 0.004

- L(006),, = 14.205 £ 0.009

LD cup
10061, * -0134 £ 0.0009

L LTI gyp = 14.396 £ 0.008 (mm)

i yd

Rkl

L

303

£ IN (002,

27

Fig. 9

Plots of the A Values in Fig. 8 against £
in the Trigonal Indices (00 £). L(I11)cy,
indicates an average distance between two
nearest cubic diffraction spots along the
[T11)eyp direction. L(006)yj, which is
equal to (I11)eyp + AL, corresponds to
the distance between two nearest trigonal
spots along the [T11]¢yp direction.

121-2690 Rev. 1

The interreflections distances on the precession photograph are in-
fluenced by a slight eccentricity in the crystal setting, variations in the film
mount, differences in film shrinkages, etc. Hence, the data processing was
carried out using the measured values obtained from the same film. More-

_over, the ratio L(I111).y} versus L(006)¢r; is, to a large extent, free from

Based on this principle, the data processing was carried out with
five reliable sets of data and the results are summarized in Table II, where
unbelievably large numbers of measurements employed in the data deduction

TABLE II. Data Employed for Determining the Ratio between the Cubic (111)
Spacing and the Trigonal (006) Spac
Constant of the Trigonal Structure.

(hkg) and (h*1,k*1,£*1) reflections on the precession film. L(006)tri is the
(hk£) and (h, k, £*6) reflections and has a relation,

distance between the trigonal
L(006)¢ry = L(111)eyp + AL.

ing, Leading to a Highly Accurate c-lattice
L(111)cyp is the distance between the cubic

Each group of data was acquired from the same

film. Slight differences among L(111)cyp are due to the variations in the experi-
mental settings as explained in the text. The ratios, L(111)cyp versus L(006)¢ri,
are highly reliable on account of eliminating most of the experimental variations.
The standard deviations and the numbers of measurements employed are also given.

L1 san AL L(006);ri L(111)cub Number of
Domain (mm) (mm) (mm) L(006)tri Data
II 14.396 * 0.008 -0.191 £ 0.004 14.205 * 0.009 1.0134 £ 0.0009 109
1I 14.393 * 0.009 -0.172 £ 0.002 14.221 * 0.009 1.0121 % 0.0009 113
111 14.425 * 0.006 -0.204 * 0.006 14.221 £ 0.009 1.0143 £ 0.0008 112
11 14.406 *+ 0.007  -0.195 * 0.004  14.211 £ 0.008  1.0137 £ 0.0007 117
v 14.387 + 0.008  -0.193 +0.005 14.194 £ 0.009  1.0136 * 0.0008

Weighted Average 1.0132 * 0.0004
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should be noted. The final result that we have been after is the weighted

average on the ratio values for L(111).yp versus L(006)¢,;. It is 1.0132
0.0004. Using the cubic lattice parameter obtained by means of the powder

technique, one finally obtains the trigonal c spacing.

The lattice parameters of the trigonal structure are thus given as

follows:
In the trigonal system, we have

atri = 3.617 £0.002 A;

o
ofri = 17.96 £0.01° A;
ctri/atri = 4.965 % 0.003.

In the rhombohedral system, the lattice parameters are

6.339 + 0.003 A;
33°09' * 4!,

2rhomb =

a

These results are of very high accuracy on account of the weak reflections
with which the measurements were carried out. Our Y,C values may be
compared with the Ho,C data, arhomp = 6.248 * 0.010 A and a = 33°04' £ 20!
(Bacchellaetal., 1966).

In Fig. 9, the intercepting value of the straight line with vertical
axis is supposed to be zero, but it is -0.15 mm. This difference is very

small but significant. It is partly explained by the absorption effect

C. Determination of Space Group

A survey of the indices of the observed reflections failed to give any
general extinction rule, except that the observed indices satisfy -h+k+/ = 3n,
implying the trigonal symmetry.

About 9,000 independent intensity measurements of the trigonal re-
flections with £ odd were treated by the following crosslinking-weighted,
statistical averaging processes: an intrazone normalization on different
time-exposured intensities; interzone intercorrelations; a data deduction
using Friedel's law equivalency. The cubic reflections were frequently
employed in the intensity standardization.

Since there are four trigonal single-crystal domains having differ-
ent axial orientations, we obtained four sets of intensity values per reflec-
tion. The ratios among these four were taken, and the averages of these
ratios were used to intercorrelate the intensity data of four domains.



The final intensity set was affirmative of the trigonal symmetry.
We thus established the trigonal symmetry by all means. Since no general
extinction was observed, the probable space group is D] - R32 (No. 155),
C3y - R3m (No. 160), or Djgq - R3m (No. 166) (International Tables, 1952).

The intensity data were then averaged out, utilizing the trigonal
equivalency. Subsequently, the observed structure factors were obtained;
these are listed in Table III, where 42 observed structure factors were de-
duced from approximately 9,000 intensity measurements (an average of
about 200 measurements per structure factor!).

TABLE III. Observed and Calculated X-ray Structure Factors
per Unit Cell of the £/ Odd Reflections of the Trigonal Y,C. The
reflections marked with single asterisk were not included in the
final least-squares refinement. Double asterisks designate un-
observed reflections. Average standard deviation of the observed
structure factors is about 5%.

Indices Bt |Fobs] Indices Foate |Fobsl
003* -49.8 o 0,0,21 67.2 72.5
101* -1.6 <16.1 315 17.3 117
015 35.8 45.2 229 31.2 34.5
009* 65.4 ** 137 -30.2 30.3
107 -65.5 69.5 0,2,19 -64.6 55.1
113* -29.5 39.2 12617 51.9 46.4
021% 1i:3 <21.8 3,0,15 -53:0 58.7

0,1,11 -71.9 78.1 401* 0.8 <24.2
205 28.9 333 1;1,219 58.3 56.8
119 51.9 50.5 3,111 -40.0 41.7
027 -50.3 49.9 045% 14.7 <23.4

150,18 70.9 69.3 0,1;23 -64.5 61.6

0,0,15% -85.3 102.7 407 -26.3 22.0
211%* 1.4 <20.1 2,1,19 -56.0 52.6

2,0,11 -63.9 59.5 1,3,13 37.3 37.7
125 23.4 23.8 2,2,15 -45.9 44.5
217 -41.3 43.5 321% 0.6 <3L.2

Q42513 58.9 54.3 0,4,11 -34.8 30.4
303* -19.5 <25.5 1,0,25 52.9 56.6

0,1,17 (A1 66.1 4,0,13 32.1 377

1,1,15 -72.1 70.9 413* -11.0 <28.8

12511 -54.0 54.5 3515ET 39:8 42.0
309 36.5 35.8 3,0,21 43.8 51.5

1,0,19 -74.8 75.7 23,13 =30.3 29.3

2.1513 50.1 48.8 419* 20.5 <27.9
223* -16.6 <22.1 1, 1,27 -46.8 51.1

2,0,17 60.4 59.7 0,1,29 40.5 48.3
131% 1.0 <26.8
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D. Statistical Structure Analysis
It should be reminded that we are dealing with the £ odd reflections
only. Firstly, the intensities corrected for the Lorenz-polarization factors
were arranged in order of increasing sin® 0 and were grouped into appro-
priate equidivisional sin? 6 regions in sequence. The intensity values within
a given sin’ O region were averaged out. The resultant data are shown in
Fig. 10. The procedure employed here is identical to the widely employed

Wilson's zone-averaging method (Wilson, 1942).
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The solid-line curve in Fig. 10, a median of the observed points,

starts from zero, increases very rapidly, and tends to fall off at high
angles. This is in striking contrast with the usual Wilson plot, which is,

in general, an inclined straight line starting from a nonzero value. The
Wilson straight line is expected for a crystal structure consisting of a
sufficiently large number of atoms at general positions. Our case is due,
undoubtedly, to special arrangements of the atoms.

When small shifts in the positions of the reflections were neglected,
2n would lead to the face-centered cubic

the trigonal reflections with £

lattice of the yttrium atoms. However, the intensities of the trigonal re-

flections with £ = 2n fall off much faster with increasing sin 6 than does

the cubic case (see Fig. 6). It appears that the trigonal reflections with
2n intensities.

£ odd build up their intensities at the expense of the [/ =
The predicament mentioned above implies that the yttrium atoms
are slightly displaced from the face-centered cubic positions. Along this

guide line, we interpret Fig. 10 as follows:



The trigonal unit cell should contain six Y atoms. The noncentro-
symmetric space group R3m provides threefold positions for Y: (0,0,0;
1/3, 2/3, 2/3; 2/3, 1/3; 1/3) +(0,0,z). Two sets of the above coordinates
are needed to accommodate two sets of three equivalent Y atoms. Hence,
we have to determine two positional parameters, z, and z,. In the centro-
symmetric R3m, we set z; = -z,. This is also the case in the noncentro-
symmetric R32. Hence, our Y-atom assignment in R32 is centrosymmetric.
The choice of the origin in R3m is arbitrary. Hence, in R3m we may choose
the origin so that z; = -z, which then becomes identical to the coordinate
requirement in R32 and R3m. In other words, insofar as the Y atoms are
concerned, the choice among the three space groups is immaterial.

The structure factor in R3m excluding the carbon contribution is
given by

e & el (13)
A = 3fy(cos 2mlz; + cos 2mlz,); (14)
B = 3fy(sin 27fz; + sin 27m4z,). (15)

Equation (13) may be rewritten as
F? = 18£5{1 + cos 2ml(z; - z2)}. (16)

Let us denote a small displacement from the special position as Az. From
the cubic analogy, we set

21 - 22 = 1/2 + 20z, ” (17)
which converts Eq. (16) into

|F| (£ = even) = 6fy|cos 2mibz|, (18)
and

|F| (£ = odd) = 6fy|sin 2mlbz|. (19)

The last two equations delineate approximately the experimental result
given in Fig. 10 and also the curves in Fig. 6.

Now, we again confine ourselves to the odd £ case, for which we
use the relation

2 6£2. sin? 2 sin 6\?
K ps = 36fy sin (2mLLz) exp|-2By X - (20)
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where K is the scale factor and Igpg is the observed intensity corrected
for the Lorenz and polarization factors (by definition Ihg = Fébs) Based
on Eq. (20), the averaging process employed for deriving the observed
points in Fig. 10 corresponds to

2 ey 2 sin 9 2
K? Iobs/(36fY)>£ = <Sln 21l AE f exp« - BY =
1 sin X sin 6\?
(-2 oo 22 (55 ]
2 4 ; 5
:%(—2(3—‘-%+,.> exp{_ZBY(Su;\ 9) }’ (21)

where

and c is the lattice constant. The solid curve in Fig. 10 follows roughly
Eq. (21). For small 6, one approximates

(tobs/ G652 )), 2 (%"){%}Z (%9)2 (22)

The tangent of the curve at (sin Q/X)Z = 0in Fig. 10 is 1.60, with which
(Az/K)? = 0.96 x 10™* was obtained using Eq. (22)

A wavy nature of the observed points in Fig 10 is explainable through
the sin } term in Eq. (21). However, owing to a relatively large experimen-
tal uncertainty, no reliable X value could be deduced from the data in Fig. 10
Nonetheless, our interpretation here has now set up a good foundation for
more refined structure analysis.

E. Statistical Refinement

Let us proceed with a simpler, yet better, statistical analysis than
the Wilson-type approach. Firstly, we rewrite Eq. (20) in the form

Iops/(368%) = (1/K?) sin? (2m0Az) ex‘p{-ZBy<su; 6)2}_ (23)

Taking logarithms gives

_&g{lobs/(%f%{)} @ @{# sin? (Zﬂ,@Ag)} c ZBY(Si; 9)2. (24)
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We gather ) AT of the reflections with a given £. The least-squares analy-
sis of Eq. (24) gave the best values for (l/K)|sin (2m£Az)| and By. The
absolute-value notation here will be dropped hereafter, since sin (2m£Az) is
always positive in the angular region of our concern. The procedure was
applied to from £ = 3upto £ = 25. A dozen By values were thus obtained.
A statistical average of those yielded By = 0.94 K-

When the (1/K) sin (2m£Az) values are plotted as a function of £, the
resultant curve should be monotonically increasing at first, reach a maxi-
mum value, and then tend to fall off. The maximum point is attained when
2mlbz = /2, i.e., Dz = 1/(44). At the same time, the maximum point
gives l/K. Unfortunately, the observed data could barely reach the maxi-
mum value. Hence, a curve-fitting technique was employed to obtain K

and Az.

This simple yet effective method is illustrated in Fig. 11, for which
we write Eq. (23) as follows:

sin 8?
|Fobs! /| 6fy expd-By (S = ¢ sin (2mLADz). (25)
| s R L T G R T
10—

snl i //—T
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Fig. 11. Determination of the Carbon Positional Parameter Az Based
on Egs. (25) and (32). The scale factor K has been adjusted
to unity. Open and shaded circles represent the observed
points for £ =4n -1 and £ = 4n + 1, respectively. The
solid line is a median curve for the observed points and is
given by (1/K) sin (272 Az) with K =1. Note that open cir
cles are consistently above the solid curve, whereas shaded
circles lie below the solid curve. These characteristics as
well as the magnitudes of the deviations of the observed
points from the solid curve were used to substantiate the
validity of the Case I structure for YoC.
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The maximum sine value takes place near £ 29. Therefore, Az = 0,01,
The K value was about 1.0. Hence, (AE/K)Z 1 x 10”*%, which is in agree-
ment with the value obtained from the Wilson-type analysis.

F. Refinement of Structure

We have now obtained a good set of structure parameters for the
yttrium atoms: Az = 0.0l, or z = z; = =2, = 0.26, and By = 0,94 A%
Our task here is to refine these Y parameters and simultaneously to de-
termine the parameters for the carbon atoms.

As regards the carbon assignment, we consider the following co-
ordinate sets: both in R32 and R3m, (0,0, 0; 1/3,2/3,2/3; 2/3,1/3,1/3)+

3(a): 0,0,0
3(blre0s0, 1z,

In R3m, we choose 3(a): 0,0, z, with z = 0Oor 1/2. Because of the special
carbon positions under consideration, the choice of the space group becomes
again immaterial

If the carbon atoms occupy 3(a), the structure factor for £ odd is
given by
£-1
F = (-1) * 6fy sin (21m44z) - 3fc (Case I). (26)

With the assignment to 3(b), we have

f-1
F = (-1) ? 6fy sin (21m4Az) + 3 (Case II). (z27)

When one places the carbon atoms at both 3(a) and 3(b) with an equal occu-
pancy probability, the structure factor becomes

-1

F = (-1)-% 6fy sin (2m4Az)  (Case II). (28)

The carbon contribution is revoked in the Case III. All cases stated above
are computed for £ odd.

By means of Eqs. (26) to (28) and the least-squares method, the
structural parameters were refined. The initial parameters employed were
A.g = 0.0l and By = Bc = 0.94 2. The discrepancy factors with these ini-
tial parameters were R,(0.086,0.16, 0.10) and R,(0.009, 0.032, 0.014), re-
spectively, for the Cases I, II, and III.



The Case I yielded the smallest discrepancy factors and is hence
strongly favored. In Case I, one cycle of the least-squares refinement re-
duced R; = 0.086 to 0.056 and R, = 0.009 to 0.0055. For comparison, the
one-cycle least-squares improvements in Case II were R; = 0.16 to 0.11
and R, = 0.032 to 0.016.

The second cycle in Case I gave Ry = 0.056 and R, = 0.0047, both
of which indicate no significant improvement. The final parameters in the
Case I were

Az = 0.0085 % 0.0003,

z = 0.2585 % 0.0003,

By = 0.98 * 0.04 A%,

Be = 1.05 +0.20 A?,
K = 0.93 +0.03.

The values reported for Ho,C are z = 0.256 * 0.001 and By = BC = 0.32 A?
(no accuracy is given) (Bacchella et al., 1966).

We have discarded Cases II and III on the basis of the R factor
values. An additional strong endorsement for the Case I model is given in

the following chapter.

G. Confirmation of Carbon Parameters

For Case I, we write

KFobs = |Fealcl

i £-1 ‘ " ‘ 3
< |(-1)—2‘ 6fy sin (2mLAz) exp{- BY(%-Q-) }_ 3¢ exp{-Bc(s"; 9) }|

(29)

The above equation is rearranged to

KFobs/{6fY exp [-BY(“_’;E)Z]}

- S . -
|(-1)£T sin (2mfAz) - %?3 exp{-(Bc . By)(s“; 9) }|

i1 7.1, in 6\
sin (2m8As) + (-1) T —=C exp{-(Bc- BY)(S“‘ 9)}‘, (30)
2Zyfy A
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where €C and fAY are the unitary scattering factors and are given by
zcic = fc and Zvyfy = fy, where Zg and Zy are the atomic numbers of
C and Y, respectively.

Since BC = By, Eq. (30) simplifies to

sin 6\? &
KFobs/ 6fy exp| -By —X -

|-
I~

-
&l&8 2la

sin (2mllz) - (£ = 4n+1),

1

w

(31)

sin (2m4Az) + (f = 4n-1);

—
w

The ratio EC/’f\Y is relatively constant over our angular range. Let us then
express as fc/fy = a. The right-hand side of Eq. (31) is hence dependent
on fAz only. We sum up all reflections with the same £ and divide the sum
by the number of the reflections employed. This process is written as

sin (2mfAz) - 1—15 a(f=4n+1),

<KFobs/{6fY exp [-BY(Sh; 6)2]} / = (32)

sin (2m4Az) + 1—13 a(l=4n-1).

This equation may be interpreted as Eq. (25) plus the carbon con-
tribution. The experimental points in Fig. 11 are clearly in accordance
with Eq. (32), namely, the experimental points for £ = 4n - 1 lie consis-
tently above the solid line representing Eq. (25) and those for £ = 4n + 1
lie below the solid line. The observed magnitudes of these deviations gave
approximately a = 1.8, which is in good agreement with the calculated
mean value, a@ = 1.76, in the range from 0.25 to 0.75 in (sin 6)/)\.

If the Case II model were correct, the reversed signs should be
assigned in the right-hand side of Eq. (32). The observed points for 4 =
4n + 1 in Fig. 11 would lie above the solid line and vice versa for £ = 4n - 1.
This is opposite to the observation. If the model for the Case III were cor-
rect, all observation points should lie right on the solid curve in Figoil ks
This is clearly not the case. We accordingly discard Cases II and III. The
final atomic parameters are summarized in the Résuméd Chapter.



VI. NEUTRON STUDY

The neutron diffraction pattern of yttrium hypocarbide obtained
using an automatic multipurpose diffractometer (Atoji, 1964 and 1965) is
shown in Fig. 12. The powdered sample employed here was prepared from
the Lunex arc-melted buttons that had provided our single crystals used
for the X-ray study. No coherent peaks due to the probable impurities
(yttrium metal, graphite, Y,C; and YC,;) were detectable in any of our
neutron diffraction patterns.
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Fig. 12. Neutron Powder Diffraction Pattern of a Mixed Phase of the Cubic YC( og and the Trigonal YoC.
Subscripts to the indices, "c" and "t," denote cubic and trigonal, respectively.

The powder sample was packed into a thin-walled cylindrical
Ti,.;3 Zr holder which generates no coherent neutron scattering. The
holder dimensions were 1 cm in diameter and 3.8 cm in the beam-bathed
height. The packing density was 3.0 g/cm’.

The total cross section obtained by means of the transmission cell
(Atoji, 1964) was 11.3 + 0.4 barns per YCy at the neutron energy of
0.0716 eV or the neutron wavelength of 1.069 A. The x value in YCy was
later determined as 0.43 from the coherent intensity analysis of our bulk
neutron sample. At 0.0716 eV, the total cross section of Y is 8.0 barns
(Goldberg et al., 1966) and that of C is 5.4 barns in various rare-earth
carbides (Atoji, unpublished). Hence, the expected total cross section for
YCq 43 is 0.80 + 5.4 x 0.43 = 10.3, which is not significantly departed
from the observed value 11.3 barns, particularly in view of a large uncer-
tainty in the composition homogeneity.

The attenuation coefficient y in exp(-ur) for our powder sample
was 0.22 cm~!x 0.5 cm = 0.11. Therefore, the angular dependence
of the absorption factor could be neglected (International Tables, 1959).
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The background of the diffraction pattern was satisfactorily
accounted for by the sum of the elastic thermal diffuse scattering,
the multiple scattering, and the instrumental scattering. Therefore,
because of the absence of the' paramagnetic scattering, yttrium hypo-
carbide should be very weakly paramagnetic or diamagnetic. The
procedure of the background analysis has been fully described pre-
viously (Atoji, 1961 and 1967a).

The coherent peak intensities were analyzed utilizing the parameters
determined by the X-ray method. The neutron coherent scattering ampli-
tudes employed were b(Y) = 0.778 x 107'? cm (Goldberg et al., 1966) and
b(C) = 0.662 x 1072 cm (Hughes and Schwartz, 1958).

For the trigonal Y,C, we utilized l:heo X-ray parameters, i.e., the
temperature factor coefficients By = 0.98 A® and B = 1.05 A2, and the
positional parameters (0,0, 0; 1/3, 2/3, 2/3; 2/3, 173, 1/3) + (0,0, z), with
z = 0 for carbon and z = 0.2585 for yttrium. As seen in Fig. 12, several
trigonal peaks were completely isolated from the cubic reflections. The
agreement between the observed and calculated intensities for those isolated
trigonal peaks was found to be excellent, thus verifying the X-ray result
conclusively.

The scale factor was subsequently determined. The calculated tri-
gonal intensities were then subtracted from the observed peak intensities
so as to obtain the cubic intensity values, for all cubic reflections are over-
lapped with the trigonal reflections. The resultant cubic intensities with all
even in (hkf) and those with all odd indices were treated separately, using
the method similar to that described in Ch. IV. Two sets of these cubic in-
tensities gave the same temperature factor, B = 1.1 + 0.1 A", which is sig-
nificantly smaller than the X-ray value of B = 1.85 + 0.08 Az Also, the
above data processing yielded the value x = 0.28 for YCy with a high degree
of reliability. It is not unreasonable to expect a smaller B value for smaller
X, i.e., less carbon content.

With the parameters given above, all observed data were compared
with the calculated values in Table IV. The final discrepancy factor value
was

Z' Iobs - Icalcl

Iobs

- 5.90]0,

which presents another confirmation of our X- ray structure. The other

probable models discussed in Ch. IV.B gave significantly less satisfactory
agreements.
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TABLE IV. Observed and Calculated Neutron Diffraction Intensities for the Quenched
Powder Sample of Yttrium Hypocarbide Which Is an Admixture of the Cubic YCo 28
and the Trigonal Y,C. The cubic reflections are designated by subscript c attached
to their indices. The intensities are given in barns per unit cell. On the basis of
this unit, within our experimental error, the scaling factor for the cubic YC, ;4 data
is accidentally equal to the trigonal Y,C scale factor.

Indices Icale Iobs Indices Icale Iobs
003 930 900 0,0,15 1137) 5
101 289 300 0,1, 14 25
006 181 211 68
012 626 »1474 1480 0,2, 10 49
(111), 667 122 164
104 2818 (331), 257 L3158 3690
3778 3780
(200), 960 1, A2 709
015 31 50 214 916
009 0 (420), 625
517 540
107 517 20,3 216
018 1224 125 11_J ¥
110 1367 3501 3510 217 247 240
(220), 910 10516 454 ) 47|
113 417 430 128 335
021 667 ) 300 494 L
1910 ¥ 2110
1,0, 10 93 (422), 498
116 264 1069 1070 0,2, 13 9
202 155 303 120_J p
fa11). 491_) 0, 1 237) W
0,0, 12 2207 T L 429
024 841 0,0,18 8
(222)¢ 384 1847 2060 2,0, 14 5
» 807 770
R 392 21,30 32
205 10_J 306 91
119 1 (333) 55
212 200
027 211 (511)¢ 164 i
208 547 AL 1 282 160
Ry 18 15 - 767 750
(400) 205

To recapitulate, our bulk neutron sample consisted of trigonal Y,C
and cubic YCg 3. From the scale factors for these two structures, the
average chemical formula for our bulk neutron sample was obtained as
YCp.43- The chemical analysis on the basis of random sampling of several
arc-melted buttons gave, YCq .39 (see Ch. III). The chemical composition
of our polydomain single crystal is approximately given by YCy.5- A con-
siderable inhomogeneity of our arc-melted buttons should be noted.



VII. DISCUSSION

A. Layer Structures in YCx

In Fig. 13, the crystal structure of the cubic YCy is collated with
the trigonal Y,C structure. In this figure, A, B, and C represent the
yttrium layers, whereas a, b, and c signify the carbon layers. The A, B,
and C layer configurations are the same as the a, b, and c layers, respec-
tively, except for the difference in occupants.

O v
(YR

@ xC (x: 025~0.65)

fe—3.617—+] 2%

Y2C YCy (CUBIC)
121-2682 Rev. 2

Fig. 13. Schematic Representations of the Cubic and Trigonal Structures
of Yttrium Hypocarbide. The cubic structure is drawn on the
trigonal coordinates. The capitals A, B, and C signify the
yturium layers, whereas the lower cases a, b, and c, designate
the carbon layers. Pertinent interlayer distances are given.

In the cubic YCy, the layer sequence along the [111] axis is
{A‘ B [&] ¢ [p] }, where the {A-B-CA... sequence delineates the
cubic close-packing of the yttrium atoms and the f - & - B } layers
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designate the octahedral holes being partly occupied by the carbon atoms.
Here, the interlayer distances are all equal to 1.477 A, as shown in Fig. 13.

In the trigonal structure, the unit layer sequence may be written as
{A ¢ B [_:lC bA[BacC D} Here,[] denotes the vacant layer, whereas
a, b, and c designate the carbon layers with unit occupancy factor. Although
the layer sequence in the trigonal Y,C seems complex, it is almost identical
to the cubic YC, layer structure except for the following: every fourth
layer (every other carbon layer) is completely vacant; the occupancy factor
in tlie carbon layer is unity; the interlayer spacings are not all equal.

This last subject about the interlayer spacings is of particular inter-
est. In the cubic-to-trigonal transformation, the spacing between the yttrium
and carbon layers, or simply the hetero-interlayer distance, is smaller for
the larger carbon population. The change in the occupancy parameter, from
x = 0.48 to 1.00, varies the hetero-interlayer distance, from 1.477 to
1.343 A, giving about 9.1% contraction. On the other hand, the occupancy
parameter change, from x = 0548 to zero, modulates the hetero-interlayer
spacing from 1.477 A to 1.649 A, resulting in about 11.6% expansion. As a
whole, the cubic-to-trigonal transformation expands the layer axial length
(along [111] of cubic and [001] of trigonal) about 1.32%, while no change
takes place in the intralayer interatomic distances. Subsequently, the vol-
ume of the crystal expands 1.32% in the cubic-to-trigonal transformation,
i.e., a high-to-low temperature allotropic transition (see Ch. VIII). Hence,
the crystal volume of the high-temperature disordered structure is smaller
than the low-temperature ordered structure. The disposition here is indeed
opposite to the commonly conceived structural conception.

In the cubic system, both Lallement (19%6) and Spedding et al. (1958)
have found that the cubic lattice spacing decreases as the carbon content
increases. This is a striking contrast to the transition-metal carbide, where
the reversed relation has been observed. Further discussion on this subject
is given in Ch. VIL.E.

B. Phase Transition

The phase diagram proposed by Lallement (1966) (see Fig. 14) sug-
gests that the cubic hypocarbide is stable above about 1300-1400°C, below
which the trigonal structure appears. The composition range of the cubic
phase spans approximately the range x = 0.35-0.65 in YCy, but a much
narrower composition range is imposed upon the trigonal structure (mean-
ing a very small leeway in the stoichiometry of Y,C). Spedding et al. (1958)
have found the existence of the cubic phase for x = 0.25-0.40. It is very
likely that at certain temperatures the cubic phase could be stable in an
extended range, x = 0.25-0.65, accommodating the findings of both
Lallement (1966) and Spedding et al. (1958).
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T The transformation from cubic to tri-
gonal may not be fully achieved in a fast cool-
ing; hence, the cubic structure could exist in
the quenched sample as a metastable phase.
In our single crystal, the transformation has
taken place partly. In other words, we have

1 a restrained transient state, resulting in a
two-phased or dimorphic single crystal.
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In conjunction with the YC, phase tran-
sition, recent work by Sarian and Criscione
(1967) on the diffusion of carbon in ZrCg gg
gives an estimate for just how mobile the car-
bon atoms would be in the metal matrix. From
Tl their diffusion data and lattice-constant values
© oi 020304 05060708 of ZrC at high temperatures (Elliott and

: Kempter, 1958), the average time that the car-
bon atom stays at a given lattice site in ZrCy o
Fig. 14. Schematic Phase Diagram  j5 computed to be as short as 0.8 x 107% sec at

i e 2200°C. It becomes exponentially longer as

e the temperature is lowered. Some typical val-
ues are 2.5 x 1078 sec at 1700°C, 4.2 x 10”3 sec at 1300°C, 22 sec at 1000°C
and 2.2 x 107 sec (nearly 2 yr) at 700°C. In deriving some of these values,
the reported data have been extrapolated.
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Another example we cite is that of body-centered cubic iron con-
taining up to about 0.03 a/o carbon. The carbon atom stays at the inter-
stitial site only for 1 sec, even at room temperature (Chalmers, 1959).

ZrCy 95 provides a case where the vacant sites for carbon are
exceedingly scarce. Iron containing a minute amount of carbon represents
a case in which there exist highly abundant vacant interstices. The b 4O
case may lie just about between these extremes. Hence, it is quite plausible
that the mobility of carbon in the cubic Y matrix at high temperature is
large enough to constitute a highly, disordered carbon distribution. On the
other hand, the mobility of the carbon atoms is not fast enough to complete
the cubic-trigonal transformation in a relatively rapid cooling.

Resnick and Seigle (1966) have given an interesting result for the
diffusion of carbon in TaC. Aziroff (196la and 1961b) has discussed the
diffusion process in the closest-packed crystals. The work of Rudy et al.
(1967) on the phase transition of metal carbides comprehends the thermal
analysis, the X-ray structure study, and metallographic observation.

C. Intercrystal Boundaries

Among probable transient boundaries between the cubic and trigonal
crystals, the least interphase energy could be attainable by choosing the
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cubic {111} and trigonal {001} planes as a common boundary interface, since
the above planes are completely identical to each other in both the inter-
atomic configuration and distance. The drawings given in Fig. 13 demon-
strate this in a succinct manner. This cubic {111}-to-trigonal {001} boundary
is a simple, yet typical, example of the coherent interphase interface, and

is consistent with the intercrystal axial relations shown in Fig. 7.

The boundaries among four trigonal domains are not as straight-
forward as the cubic-trigonal boundary. Let us start from an ideal case.
Suppose that the interatomic distances in the trigonal crystal are the same
as those in the cubic crystal, except for the difference in the ordering
scheme of the carbon atoms. Then, it is obvious that any atomic plane can
be chosen as a coherent interface boundary between adjacent trigonal do-
mains; that is to say, we have an arbitrary choice of the coherent isophase
interfaces for the boundaries of four trigonal domains.

In the actual case, however, a small modulation in the interlayer
distances takes place in the cubic-trigonal transformation. Hence, the co-
herent interface in the above idealized case becomes slightly incoherent.
The energy associated with this incoherency should certainly be less than
the stabilization energy in forming the trigonal crystals. The following
example is of value in estimating the degree of incoherency in the isophase
interfaces among the trigonal domains.

Although under certain conditions the generation of the trigonal
domain may take place spontaneously at any region of the cubic crystal, for
the sake of simplicity we assume that the trigonal crystals develop from
the cubic {111} planes with an equal growth rate. In the aforementioned
idealized case, in which no modulation takes place in the interlayer and in-
tralayer interatomic distances, the coherent interfaces between the adjacent
trigonal domains are the {108} planes (the {110} planes in the cubic descrip-
tion). However, because of a slight difference in the interlayer distance
between the cubic and trigonal structures, the {108} planes of the adjacent
trigonal domains split each other radially with the radial mutual splitting
angle of 44'. This angle may be called a tilt angle, since in a conventional
terminology the boundary of our concern may be said to be of a tilt boundary.
Also, some call this a "subboundary" in a more general sense (Chalmers,
1959). The energy associated with such a small-angle tilt boundary would
not be substantially large.

By the same token, in the generalized case, that is, when the growth
rates of the trigonal domains are different from one another, the trigonal
isophase interface is still a subboundary, and the degree of the incoherency
should be as small as the equal domain-growth case.

In our multidomain single crystal it was found, through the diffrac-
tion intensity analysis, that the relative volumes of the cubic crystal and
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those of the trigonal domains, I to IV, are 3.6,:0.40, 1.00,; 048 and'0-9 15
respectively. Significant differences among four trigonal domain volumes
suggest that the strain field and related factors could easily influence the
growth rates of the trigonal domains in the cubic-to-trigonal transformation.

D. Bonding Configurations

The pertinent interatomic distances in the cubic and trigonal struc-
tures are listed in Table V. For obtaining a relative measure of bond
strength, the bond numbers were computed using Pauling's (1960) semi-
empirical equation

D(n) = D(1) - 0.60 logyy n, (33)

where D(1) is the single-bond distance and D(n) is the bond distance for

the bond number n. Also, D(n) = Ry(n) + Rp(n), where R,(n) and R,(n) are
the bond radii of the atoms. We have chosen R(1) = 1.618 and 0.772 A for
Y and C, respectively. The R(1) value for Y was evaluated from the latest
lattice constants of the Y metal (Gschneidner, 1961) and is slightly different
from Pauling's value. The R(1) value for C was obtained from diamond.
The resultant individual and total bond numbers are given in Table V.

TABLE V. Interatomic Distances and Corresponding Bond
Numbers in the Cubic and Trigonal Yttrium Hypocarbides.
The values for the YC, are also given. In the trigonal Y,C,
Y-Yg is the intralayer distance, Y-Ypy is the interlayer dis-
tance across the carbon layer, and Y-Yj is the interlayer
distance across the vacant layer

Cubic YCy (x = 0.48)

C-6Y 2.558 A (n = 0.525) Y-6xC 2.558 A (n = 0.525)
C-12xC 3.617 & (n = 0) Y-12Y 3.617 A (n = 0.232)
Y nfor C = 3.15 Y nforY = 2.78 + 3.15x

= 4.29

Trigonal Y,C

C-6Y 2.483 A (n = 0.700) Y-3C 2.483 A (n = 0.700)
C-6C  3.617 & (n = 0) Y-6Y; 3.617 A(n = 0.232)
Y nfor C = 4.20 Y-3Yp 3.402 A (n = 0.259)

(

Y-3Yyrr 3.904 A (n = 0.077)

znforY = 531

Tetragonal YC,

:

! 1.275 A (n = 2.29) Y-2C 2.447 A (n = 0.804)
5

C-Y  2.447 A (n = 0.804) * Y-8C 2.668 A(n = 0.344)
2

C-4Y  2.668 A (n = 0.344) Y-4Y 3.664 A (n = 0.194)

anorC=4.47 anorY = 5.14
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The C-Y bond (n = 0.70) in Y,C is substantially stronger than that
in YCg.48 (cubic) (n = 0.53). The Y-Y bond (n = 0.23) in YCp.4s (cubic) re-
mains the same in the intralayer distance Y-Yy in Y2C. The interlayer
Y-Y bond, between which carbon atoms intervene, Y-Yyr (n = 0.26), is
slightly stronger than the cubic Y-Y bond. On the other hand, the inter-
layer Y-Y bond across the vacant layer, Y-Yy; (n = 0.08), is, however,
largely weakened. In both the cubic and trigonal structures, the C-C bonds
are all very weak.

The total bond numbers of C and Y in YCg 4 (cubic) are 3.2 and 4.3,
respectively, whereas they are 4.2 and 5.3 in Y,C. Hence, in all accounts,

the chemical bonding in Y,C is substantially stronger than that in the cubic
Y Co.48-

In the cubic structure, the statistical site symmetry of Y is m3m
and that of C is also m3m. The octahedral symmetry is attained either in
a time or space average sense. This statistically high symmetry breaks
down to considerably lower symmetries in the trigonal structure.

In Y,C, the site symmetry of C is centrosymmetric 3m and that of
Y is noncentrosymmetric 3m. Hence, the bond configuration of C with
respect to the surrounding Y atoms is that of slightly deformed octahedron.
On the other hand, the bonding of Y in Y,C is highly asymmetric (see
Fig. 13). The Y-C bond configuration here is that of a trigonal pyramid with
Y at its apex. The Y-Y bonds are also asymmetric, as may be seen from
the wide differences among their bond numbers (see Table V).

The bond numbers in YC, (Atoji, 1961) are given in Table V for
comparison. The total bond number of carbongn YC, is larger than that
in Y,C; the relation is reversed as regards the total bond number of Y. It
appears that in comparison with Y,C the bonding associated with C in YC,
is enhanced at the expense of the bonding strength of Y. In fact, all carbon
atoms in YC,, a highly metallic compound, dimerize to form C, groups.
Hence, the C-C intramolecular bond number of YC, (see Table V) was com-
puted on the basis that it is a nonmetallic bond. There exists no such higher
carbides in the transition-metal carbides. This implies that as regards
the chemical-bonding aspect the carbon atoms in the rare-earth carbides
play a much stronger role than those in the transition-metal carbides. This
subject is again discussed in Ch. VIII.

So as to find the intercorrelation among the chemical-bond struc-
tures of YCx, Y2C, YC,, and Y,C; as appeared in the phase diagram (see
Fig. 14), a literature survey of the crystal structure of Y,C; was made. No
report was found, although in some papers the rare-earth sesquicarbide
structure was labeled as the Y,C; type. More properly, it should have been
stated that Y,C; is probably isostructural to (RE),C; (Atoji and Williams,
1961).
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Rundle (1948), utilizing Eq. (33) extensively, has given an illumi-
nating interpretation on the bonding structures of the MX compounds M =
transition metal, and X = C, N, and O). The atomic-orbital treatment of
the metallic bond by Altmann et al. (1957) together with Kimball's table for
various bond hybrids (1940) render a fundamental account for the metallic-
valency theory. Ern and Switendick (1965) and Lye and his co-workers (1965,
1966, and 1967) have extensively developed the band-structure analysis of
the refractory MX compound. Keller's concept of the band structure (1960) may
be applicable to the metal-carbide structure.

The crystal structure data for metal carbides and related compounds
are becoming very numerous. Recent representative reviews, some of
which include qualitative discussions on the chemical bond, are given by
Senkin and Milliken (1963), Storms (1967), Williams (1966), Nowotony (1963),
and Nowotony and Benesovsky (1967).

Many reliable data have recently become available on a long-
disregarded subject, the physical properties of metal carbides. Some noted
publications are as follows: The localized electron-density or ionic-state
study by Nagakura et al. (1966) and of Hosoya et al. (1968); superconduc-
tivity (Sadagopan and Gatos, 1966); thermoionic work function (Wilson and
McKee, 1967); scattering of electrons by vacancies in TiCx (Williams, 1964);
the X-ray emission spectra (Holliday, 1967); and the NMR study (Froidevaux
and Rossier, 1967).

E. Related Structures

Firstly, we discuss some structural differences between the rare-
earth hypocarbide and the transition-metal hypocarbide. We cite tantalum
hypocarbide, Ta,C, for the latter, since Ta,C exhibits a phase transition
similar to that of Y,C and since the crystal structures of both phases of
Ta,C are known with good accuracy. So far, Ta,C is the only case for which
usable structural data of a transition metal hypocarbide exist.

The fundamental structure of Ta,C is that of hexagonal close packing,
whereas Y,C has a cubic close-packed structure. Otherwise, the order-
disorder transition of the carbon atoms in Ta,C resembles that for the rare-
earth hypocarbides. In the disordered structure of Ta,C (Elliott, 1965),
the tantalum atoms form a hexagonal close-packed lattice and the carbon
atoms occupy randomly half of the octahedral interstices. The stacking
structure of disordered Ta,C may be represented by {A B A B }
where designates a half-filled carbon layer of the c-type configuration
In ordered Ta,C (Bowman et al., 1965), the layer scheme is given by

ATiE B D Aic B D A _}, here, D delineates an unoccupied layer as
employed previously. <
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As seen in Table VI, in both Y,C and Ho,C, the disorder-to-order
transition of the carbon atoms alters the metal-carbon bond number from
1/2 to 2/3, implying a considerable increase in the bond strength. On the
other hand, in the ordered Ta,C with the anti-CdI, type structure, the Ta-C
bond number is 3/4, which is smaller than or equal to the Ta-C hond num-
ber in Ta,C with the disordered carbon atoms.

TABLE VI. Metal-to-Carbon Bond Numbers in Some Representative
Metal Hypocarbides. The single-bond radius R(1) of carbon is 0.772 A.
The probable bond number may be considered as a rounded-off value of
the bond number.

Probable
Structure Distance R(1) (o°r Z F}(l) Bond Bond
Compound Type Bond (A) Metal (A) (A) Number Number
YzC(a) Trigonal, Y-C 2.483 1.618 2.390 0.70 2/3
anti-CdCl,-type
YCo_gla) Cubic, y-clf) 2558 1.618 2.390 0.53 1/2
NaCl-type
Ho,c (®:¢) Trigonal, Ho-C 2.467 1.583 2.355 0.65 2/3
anti- CdCl,-type
HoCy,(€) x 2 0.30  Cubic, Ho-c(f)  2.495 1.583 2.355 0.59 1/2
~0.65 NaCl-type ~2.475 ~0.63 ~2/3
Ta,c(d) Hexagonal, Ta-C  2.186 1.343 2.115 0.76 3/4
anti-Cdl,-type
Ta,cle) Hexagonal, Ta-clf) 2.162 1.343 2.115 0.84 5/6
C disordered ~2.178 ~0.79 ~3/4

(a)This study.

(b)Bacchella et al. (1966).

(¢)Lallement (1966).

(d)Bowman et al. (1965).

(e)As reviewed by Elliott (1965), there exists some dlscrepa:lcies among the reported values.
The range cited above covers the variations in the reported data.

(f)Diatance between the metal and the octahedral interstitial site. Note that the octahedral
sites are partially occupied by carbon atoms

In the ordered Ta,C structure, the interlayer distance between two
metal layers intervening the carbon layer is 2.505 A, whereas the metal-
metal interlayer distance across the vacant layer is 2.432 A (Bowman
et al., 1965). This relation is opposite to the Y,C case.

In the Ta-C system, near the TaC composition, the cubic lattice
increases in proportion to the carbon content (Bowman, 1961). In the cubic
rare-earth hypocarbides, this relation is also reversed (Spedding et al.,
1958; Lallement, 1966).

Therefore, in all cases described above, the carbon atom behaves
as a typical interstitial atom in Ta,C and lengthens the surrounding metal-
metal distance. This is also the case in other transition-metal carbides.
On the other hand, the carbon atom in the rare-earth hypocarbide strengthens
the associating metal-metal bonding.



Now, we extend our review to the hypocarbides of other transition
metals but still restrict ourselves to the Me,C composition. A classifica-
tion of these carbides is given in Table VII. The metals in the group IVA
of the periodic table: Ti, Zr, and Hf, form NaCl-type carbides in the com-
position range from MeC to near Me,C. The hypocarbides here do not have
the ordered phase at room temperature. In the Cr-C system, the structures
of Cr3C,, Cr,;;Cq, Cr;C;, and Cr;C, have been studied (Hansen, 1958;

Elliott, 1965; Pearson, 1958; Pearson, 1967). However, the carbide with
the structurally definable composition Cr,C is not known.

TABLE VII. A Periodic-table Classification of the Ordered
Structures of the Known Metal Hypocarbides with the Com-
position Me,C and Having the High-temperature Carbon-
disordered Phase. In all cases, the order-disorder transi-
tion affects slightly the structure of the metal matrix, which
is approximated by either cubic close-packing (ccp) or by
hexagonal close-packing (hcp). The ordered carbon dis-
tribution further classifies the structure types as follows:
hep-1, £-Fe,N; hcp-2, {'-Fe,N; hcp-3, £-Nb,C; hcp-4, e-Fe,N;
hcp-5, anti-CdI,. The carbides of Ti, Zr, Hf, and Cr do not
exhibit the structure types designated above.

IIIA IVA VA VIA
Sc,C (Ti) V,C (Cr)
cCpy anti—CdClZ(a) hep-1(e, )
hep-2(g)
hep- 3(e)
Y, E (Zr) Nb,C Mo,C
ccp, anti-Cdcl, (b, ¢) hep-2(8) hep-1(k, 1)
hep- 3(6)
hep-4(e, h)
(Hf) Ta,C W,C
Ho,C, Gd,C hep-1(1) hep-1(1, m)
Dy,C, Er,C hep-5() hep-4(1)
cop, anti-CdClz(Cvd) hep-5(n)
(;;See Appendix. (Dyvon et al. (1967). (KParthé et al. (1963).
(C)Presem report (1968). ®)Rudy and Bruki (1967). (UNagakura and Kikuchi (1966).
(d)Dean et al. (1964). (MTerao (1964), (MRudy and Windisch (1967),
Bacchella et al. (1966). (Nagakura and Aihara (1967).  (Butorina et al. (1960).

€
Yvon et al. (1966). MBowman et al. (1965).



On the other hand, Sc, Y, rare earths, V, Nb, Ta, Mo, and W form
Me,C with a very small tolerance in the composition ratio. The crystal
structures of these hypocarbides have been determined, but not with high
accuracy except for the cases which we have cited in Table VI. The metal
atoms Sc, Y, and rare earths form the cubic close-packed structure, and
V, Nb, Ta, Mo, and W take part in the hexagonal close-packed matrix.
Upon heating, an allotropic transition takes place due to the order-to-
disorder change in the carbon positions. The transition may accompany a
small distortion in the metal matrix, but does not alter the packing scheme
of the metal atoms. Upon cooling the disordered compound, the carbon
atoms settle down to certain positions, resulting in the various ordered
structures listed in Table VII. When more than one ordered structure is
given, all but one should be metastable at room temperature. The thermo-
dynamic relation among these allotropic ordered structures has not been
studied very thoroughly.

51
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RESUME OF STRUCTURE DATA

Chemical Formula YCo.28 YCo.48 Y,C*
Molecular Weight 92.28 94.69 189.9
Crystal Symmetry Cubic Cubic Trigonal
Lattice Constants (&) a = 5.13+0.01 a =5.115+0.002 a = 3.617%0.002

c = 17.96 £ 0.01
Unit-cell Volume (2\3) 135.0.4°0:8 133.8 £ 0.1 203.4+ 0.4
Chemical Formula Units
per Unit Cell 4 4 3 (6 as YCy5)
Density (g/cm?) 4.581 4.700 4.650
Space Group O;-FmSm O;-leim D;4-R3m
Coordinates of Y 4(a) 4(a) 6(c), z = 0.2585+0.0003
Coordinates of C 4(b) 4(b) 3(a)
Site Symmetry of Y m3m m3m 3m
Site Symmetry of C m3m m3m 3m
Interatomic Distance
Y-C ( 2.565 + 0.005 2.558 £ 0.001 2.483 £ 0.003
P 3.402 £ 0.007
I;‘t;"fm“ Jatencs 3.627 + 0.007 3.617 + 0.002 3.617 + 0.002
-Y (A) 3.904 + 0.008
Temperature Factor
Coefficient of Y (A2) B =1.1%0.1 B = 1.85 + 0.08 B = 0.98 + 0.04
Temperature Facgor
Coefficient of C (Az) B = 1.1 % U.1 B = 1.85% 0.08 B = 1.05 + 0.20
Mean Debye Temperature**
6 (°K) 230« 10 170 5 233 &£ 6

*In the rhombohedral coordinates, the lattice constants of Y,C are a
This unit cell contains one Y,C chemical unit.

and a = 33° 09' +4'.

6.339 £ 0.003 A
The coordi-

nations of C and Y are 1(a) and 2(c) with x = 0.2585 + 0.0003, respectively.
**For the derivation of the Debye temperature, see International Table (1959) and also

Bernstein (1964).



APPENDIX

Crystal Structure of Sc,C

Using the X-ray powder photographic method, Rassaerts etal. (1967)
have determined the crystal structure of Sc,C (their sample No. 607:10) as
follows: a face-centered cubic structure with a = 9.44 A for Sc,.gC; space
group, O'l',l-Fd3m (No. 227) (International Tables, 1952); the number of the
Sc,C units per unit cell = 16; Sc positions, 32(e), (x, x, x) () with x = 3/8;
carbon positions, 16(d), (5/8, 5/8, 5/8) (3} . The approximation, Sc; gC =
Sc,C, is tolerable in the present discussion.

The observed scattering angles and the visually estimated intensities
as reported by Rassaerts et al. (1967) are tabulated in Table VIII. Here, a
universally accepted relative intensity designation (Peiser et al., 1955) pre-
scribes approximately

vvs (or vst) for 100, vs for 90,

s for 80, ms (or m') for 70,

m for 60, wm (or m~ or w') for 50,
w for 40, vww (or w~) for 30,

vw for 20, vvw (or vw~) for 10.

TABLE VIII. Comparison between the Cubic and Trigonal Models for
Sc,C. Both the cubic and trigonal indices including those for the un-
observed reflections are given. The dimensions of the trigonal unit
cell were obtained from the cubic-cell dimgnsion using the relations
atri = écub/z V2 and Ctri = il acyb- Values of 26,hs based on the
data of Rassaerts et al. (1967) are listed, so that one can estimate the
degree of overlapping among proximate reflections. Observed inten-
sities, Iy, are those given by Rassaerts etal. (1967). The calculated
intensities per chemical formula unit, Sc,C, were computed using the
following parameters: a thermal parameter B = 1.0 A% for all cases;
a coordinate parameter for Sc in the trigonal model, z = 0.26.

: -2
Indices 26,bs 20.41c I.210%:10
Cubic Trigonal (®) t) Iobs Cubic Trigonal
111 003 16.2 16.3 w Bl 271
311 101 - 31.4 * 18 4
012 882
222 006} 32.9 32.9 vs+ 1197 253}1135
400 104 38.2 38,1 vs 904 854
354 015 - 41.7 » 6 22

333 107 1 80
511 009} 50.3 50.2 vw }4 }98

53
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TABLE VIII. (Contd.)
; i x 10=4
Indices 2k 26cale calc
Cubic Trigonal = () Iohe Cubic Trigonal
110 248 { 444
440 018} 55.0 55.0 s 556 196
531 113 - B8 * ) 29
533 021 - 64.8 & 1 0
202 85
622 116 65.6 65.6 ms 347 148 p287
150,10 54
444 0 002412 69.0 68.9 mw 141 1(2)3 120
h51 205 1 4
. L vVw 2 46
711 0, .1, L1 s s 1 42
3;’? ?i; 7.6 TT.0 vVW i 2 ;52) 37
800 208 81.5 81.6 w- 58 46
W33 . 013 - 83.9 * 0 18
555 211 0 0
= *
751} 0,0, 15 it 1}1 101
122 57
622 B2 10 90.7 90.8 mw 116 18 ¢85
0l et 10
214
840 PR 93.8 93.8 m 159 Z: 120
753 125 1 3
9“} TR 96.0 96.2 vvw 0}1 17120
931 217 - 102.4 * 1| 16
300 33
844 128 106.2 106.3 m- 132 52 96
L, 0,°16 11
55 0
303
71 0 2 13} 108.6 108.7 vVWwW 0pl 4}15
933 A 0 11
¥ia | I 0 43
951} il 17} 115.2 115.3 vw 1}1 e L
306 1
666 2o I 10 29 36
10, 2, z} 2 8 14 116.0 116.1 mw 86}115 27 (72
0, 0, 18 8
?,.;): 1,2, 14 122.1 1222 vVW 1 29
i 1} 309 130.1 1299 wvew g}l 1
220
880 38
T 16} 134.8 134.9 w 5 13}51
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TABLE VIII. (Contd.)

Indices I 107%
: Zeobs Zecalc calc X
Cubic Trigonal (°) (°) Iobs Cubic Trigonal
955 223 0 5
971 2,113 138.1 138.4 W= 12 26 366
1. 3,1 1, 0,19 1 35
973 151 1 0
3. 3.9 Ly : i o of! 4
312 69
226 60
10, 6,2 1,2, 14 150.1 150.0 ms 281 25 163
e bl 9
134 128
884
12. 0 0} 3.0, 12 156.9 156.9 s- 222}337 77214
» O 0, 1, 20 9

*The intensities for those reflections are not given by Rasserts et al.,
probably because they are too weak to be observable or overlapped with
the adjacent strong reflections.

As regards the cubic indices in Table VIII, Table 3 of that paper
of Rassaerts et al. has omitted a number of all-odd reflections such as
(311), (331), (531), (533), (733), (555), (751), etc. In Table VIII the data
have been compiled for all cubic reflections specified by the given space
group. The cubic intensitites were computed based on the model of
Rassaerts et al. The Debye-Waller temperature-factor coefficient,

B = 1.0 A%, was assumed here by analogy with that for Y,C. For our
purpose, this assignment of temperature parameter is rather immaterial.

Firstly, the calculated cubic intensities suggest that most of the
observed all-odd reflections are actually too weak to be observable. For
instance, I.5)c of the doublet (333) and (511) is less than 1% of Icalc of the
nearby strong reflection (440), whereas the observed intensity ratio should
be around 25% for this value. There are many other cases similar to the
above example, as is seen in Table VIIIL

If the intensity designation of Rassaerts et al. is vastly different
from the conventional one, then quite a few unobserved all-odd reflections
should have been observed. For instance, since the doublet (333) and (511),
with £ Ica]c = 4, has been observed, the reflection (331) with Icalc = 6
should have also been observed and could be well resolved from the neigh-
boring reflections. It appears that the cubic model is not at all well justified.



56

It is an outright speculation that the trigonal Y,C-type structure
may provide a better interpretation than the cubic model. The trigonal
structure of Sc,C was constructed using the lattice conversions
atri = gcub/Zﬁand Ctri = ﬂ acub. As seen in the case of holmium
and yttrium hypocarbides, this approximation is quite permissible for
our comparative purpose. By the same token, we assume the z parameter
of 0.26 for Sc and B = 1.0 A? for both Sc and C.

The resultant calculated intensities clearly demonstrate by far
a better agreement with the observed data than the cubic case. It is
therefore highly probable that Sc,C (No. 60/40 sample of Rassaerts et al.)
is isostructural to the trigonal Y,C. It should be noted that some
ScyC (x = 2-3) samples of Rassaerts et al., such as Sc3,4C (No. 80/20 in
their sample designation) appears to be isostructural to the cubic YCx.
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NOTE ADDED IN PROOF: CORRECTION FOR ANOMALOUS DISPERSION

A. Introduction

The wavelength of the MoKa radiation (0.7107 Igs) employed for the
present single-crystal work lies in the proximity of the K absorption-edge
wavelength of Y (S0, 7276 A). This would result in a large correction for
anomalous dispersion to the scattering factor of Y, namely, fy. It faet)
the dispersion values are very large, that is,

Afy = -2.96 and Afy = 4.00 in fy + Afy + iAf%

(Cromer, 1965). The Afy and AfY values do not vary significantly in the
scattering angular range of our concern. The dispersion correction for

fc should be negligibly small. It is known that the dispersion correction
may modulate appreciably the scale and temperature factors, but not atomic
position parameters in centric crystals (Templeton, 1955).

However, the dispersion correction for fy in our case is considerably
larger than fc in most of our scattering angular range (see Table I). Also,
Afy, amounts to as much as 10 to 20% of fy (see also Table I). Such a large
dispersion correction might modulate significantly not only the scale and
temperature factors, but also the atomic parameters. Hence, a complete
structure analysis of the cubic and trigonal yttrium hypocarbide has been
carried out using the dispersion-corrected scattering factors. In spite of
the large dispersion correction, the results indicated no significant changes
in the atomic coordinates and relatively small changes in the scale and
temperature factors. The details are described in the following. The
dispersion-corrected equations labeled as (102 V) ete, correspond re-
spectively to the nondispersion equations, Eqgs. (1), (2), etc. The same
notation has been applied to the tables and the figures.

B. Cubic YCy4 Structure with Dispersion Correction

With the dispersion terms, the NaCl-type structure factor per unit
cell for YCy (cubic) is written as

F = 4{(fy + 0fYy) + xfc} + 4001y, (1)

The observed and calculated structure factors are intercorrelated by

K|Fobs| = ’F, exP{'B(Si; 6)2}2 ’Fca1c|v (25




where K is the scale factor as defined in Eq. (2) in Ch. IV.A. Note that the
absolute value, IFcalc]v is employed in Eq. (2') rather than Fcalc as used in
Eq. (2). The logarithmic conversion of Eq. (2') gives

in(1/| Fapal) - tn & + B(*2)" )

Based on Eq. (3'), the least-squares refinement was carried out for de-
termining the best values for K and B at various carbon-occupancy
parameters x.

The R, curves as a function of x with the dispersion correction
are very much similar to those without the dispersion correction (see
Fig. 1 of Ch. V.A). Inthe LOW ANGLE case, the R, curve gives a mini-
mum value of 0.066% at x = 0.44 with B = 1.43 A%, The values obtained
witho:xt the dispersion correction are R, = 0.072%, x = 0.48, and B =
1.67 A%, In the HIGH ANGLE case, the R, curve gives a minimum value
of 0.22% at x = 0.44 with B = 1.74 A%, The values obtained without the
dispersion correction are R, = 0.22%, x = 0.48, and B = 1.85 A%, The
discrepancy factors are slightly in favor of the dispersion-corrected case.
The nominal change in the scale factor manifests itself in a small difference
in the x values. The change in the temperature factor is not appreciably
large either.

The best set of parameters thus obtained are x = 0.44, leading to
the formula YCo 43 and B = 1.74 A%, The final values of |Fcalc| and [Fopsl
are listed in Table I', where the data for the first six reflections were
obtained using the best parameters for the LOW ANGLE case, and the
remainder were computed using the HIGH ANGLE parameters.

TABLE 1'. Observed and Calculated Structure Factors per Unit Cell for the Cubic YCp a4 with tne_Dls-
persion Correction. Note that in Fealc * Acalc * iBealc. Bealc is s large as 16.0 for all reflections.

|Feal| |Fealc| |Fealc| |Fealcl
Indices  NaCl Model ~ CaFz Model |Fobs| Indices  NaCl Model ~ CaF Model |Fobs|
m 104.0 1104 103.9 + 44 600 3.1 3.2 8119
200 1104 9.0 115.1+23 a2 3.1 32 3$51+10
220 91.2 9.2 89.0+19 620 323 323 306+12
31 74.0 73 740+ 20 533 2.5 287 293:10
73 mni 7.4 75.2+29 622 2.1 26.7 30.6+ 08
400 68.2 68.2 706 +23 au 26.4 2.4 26+09
331 54.3 56.6 56.1 + 1.1 m 22 232 195+ 07
420 51.2 52.1 55.2+ 20 551 22 32 218+ 06
a2 50.4 50.4 534+12 640 2317 a7 52:14
511 425 43 414+10 642 215 21.5 271+11
333 425 a3 $32+22 553 18.1 19.0 200+08
440 40.1 40.1 426+1.0 820 15.9 145 180+ 10
531 34.0 »4 34.2:05 044 15.9 145 164+ 29

Our NaCl model (the octahedral case) gives the overall R, factor of
3.7% and the R, factor of 0.15%. For the CaF, model (the tetrahedral case),
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we have R, = 5.9% and R, = 0.46%. The difference here is not too large to
endorse strongly the octahedral case. This situation is similar to the non-
dispersion case (see Ch. IV.B).

Subsequently, so as to establish the validity of the octahedral model,
an analysis similar to the nondispersion case was carried out.

For reflections with h = odd, k = odd, and £ = odd, we have
2{|Fcalc(octahedral)| - |F ,(tetrahedral)|} = -108, (6')

where the summation was carried out on the all-odd index reflections in
Table I', excluding the first six reflections. Now, the observed data give

z{lFobs] - |Fcalc(octahedral)|} = 2 = 0 (7v)
and
Y{|Fobs] - |Fcalc(tetrahedral)|} = -105 =~ -108. (8')

Equations (6'), (7'), and (8') indicate almost complete agreement with the
octahedral model.

For the reflection with (h =4n+2, k =4n+2, £ = 4n) and (h = 4n+2,
k = 4n, £ = 4n) and their equivalent reflections, we obtain

2{|Fcalc(octahedral)| - | Fealc(tetrahedral)|} = 133. (9")
This is compared with

Z{lFobsI - chalc(octahedral)l} = oz ey (10")
and

2{Fobsl - |Fealc(tetrahedral)|} = 130 = 133, (11')
Again, the octahedral case is strongly favored. The octahedral model is
indistinguishable from the tetrahedral model for the reflection types
(h=4n,k =4n, £ =4n) and (h = 4n, k = 4n+2, £ = 4n+2). In this category,

Z{IFobs' - |Fcalc(octahedral)|} =

Z{Fobs| - [Fealc(tetrahedral)|} = 25. (12)

The idejal value for Eq. (12') is zero, and the observed small value can well
approximate this.



C. Trigonal Structure with Dispersion Correction

The final parameters in Case I in Ch. V.E were determined by the
least-squares method with the dispersion terms taken into account. They
are:

Az = 0.0087 * 0.0003 (0.0085);
By = 0.82 * 0.04 (0.98) A%;
BC = 1.02 + 0.20 (1.05) A%;

K = 0.87 + 0.03 (0.93),

where the values in the parentheses were those determined without the dis-
persion correction. The important characteristic is that Az is essentially
unchanged. The differences in By and K are significant, whereas that in
BC is insignificant. In Table III', | caic] and |Fobs| are listed using the
newly obtained parameters. The discrepancy factors R, and R; are 5.1 and
0.47%, respectively. These values may be compared with the values 5.6 and
0.47% obtained without the dispersion correction. The dispersion correction
did not vary the R-factors significantly.

TABLE 11I'. Observed and Calculated Structure Factors per Unit Cell of the 0dd-£ Reflections of the Trigonal
Y2C with the Dispersion Correction. Fealc * Acalc * iBcalc. Note that relatively large Bcalc values solely
originated from the dispersion correction. Single and double asterisks are explained in Table Ill. Average
standard deviation of the observed structure factor is about 5%.

Indices Acalc Bealc [Fealcl [Fobs| Indices Acalc Bealc [Fealc| |Fobs|
003* -41.10 3.90 a9 - 00,21 59.64 1656 619 6.9
101° -2.37 129 21 <151 35 15.12 4% 159 110
015 2.3 6.27 29 @4 by an 840 2.0 23
009* 59.49 10.80 60.5 . 137 2154 6.63 283 24
107 -60.93 852 61,5 6.1 0219 % -5805 15.15 60.0 5L6
113 2829 3.66 285 %.1 1217 %20 13.8 482 a5
021 0.57 1.20 13 <204 30,15 -8 1263 ®5 55.0
0,1,11 -7170 123 78 B2 a0 0.33 0.93 10 @1
25 .11 5.88 2.4 3.2 11,21 51.54 1557 538 532
119 %7 10.14 a8 a3 L1 -3.06 9.60 33 ».1
07 -86.23 801 %9 %38 05° 1293 45 1B7 19
1,0,13 63.33 13.80 64.8 64.9 0123 -57.66 5.9 9.8 5.1
0,0,15* e 15.24 .3 9.3 a7 B8 6.24 26 206
210 0.81 114 14 <188 21,19 -50.07 1425 52.1 83
20,11 -58.02 1161 59.2 55.8 13,13 297 10.74 U7 33
125 2103 5.52 27 23 22,15 -z 1185 @9 a7
ar -31.86 7.53 386 038 21 0.24 0.90 09 82
02,13 52.65 12.9 542 509 04,11 -3047 9.03 21 75
303° -18.09 324 184 @39 1,025 %2 15.48 a8 53.0
0,117 3.2 15.69 6.2 619 40,13 2847 1011 202 3
L115 -65.10 1431 66.6 66.4 PED -1 252 75 10
12,11 -4893 10.89 50.1 511 3017 ue 1224 %.7 »4
309 32.61 894 38 36 3021 15 B.71 09 83
1,0,19 -67.62 16.14 0.5 09 2311 2130 846 76 215
2113 a6l 12.18 %2 6.1 419° 17.94 6.9 19.2 2.1
23 -15.82 3.03 15.7 <01 L1127 -4131 13 a7 49
2,017 53.76 1476 55.8 56.0 0,129 U 1380 35 53
B3I* 0.48 0.9 L1 @51
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To distinguish Case I from other models, the analysis similar to the
nondispersion case was also carried out. With the dispersion correction,

the equations given in Ch. V.F are modified as follows:

(KFobs)Z = chalc,Z

bt sin 6*

2
in 6 2
< Gk exp{-BC (s‘; )}]
2

£-1

il : 2

B [(-1) 2 6AfYy sin (2mhAz) exp {-BY(S—”;—(;) }] . {297
The above equation is rearranged to

2
AFobs)z s [6Af§- sin (2mlAz) exp{-BY(L;“e)z}]/ [6(fy+Ai'Y) exp {_BY<¥)Z}]

L0 i :
=lisin (ZﬂiAE) s 4-1]* Zcfe exp{-(Bc - By)(m___G)z} (30')
ZZY?Y A
f
Sin (ZAs e e )
1 f'Y
(31%)

f
Az e
BE, ‘

where fy = fy + (Afy/Zy) and in deriving Eq. (31') from Eq. (30'), B¢ = By
was assumed. Averaging over a given / leads to the equation

\
2

1" . i 2
\%(Fobs)z _ [6Afy sin (2m4Az) exp {.BY(———-"; 9) H sin (2m£Az) - 1—13 a' (£ =4n+1),

. in 6\*
6(fy + Afy) exP{-BY(S—"}:‘) } sin (2mLAz) +% a' (£=4n-1),

(32)
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where o' = ?C/?Y- The result based on Eq. (32') is illustrated in Fig. 11'.
The experimental points for £ = 4n - 1 lie consistently above the solid line

representing sin (27 £Az), and-those for /

4n + 1 lie below the solid line.

The observed magnitude of these deviations gave approximately a' = 0.62,
which is in good agreement with the calculated mean value, @' = 0.68.
> T T T 1] T T T
1.0~ .
sl | B .
) Y€
;f = s . Fig. 11'
- | 1
Ak \ a The Dispersion-corrected Diagram Corresponding to
3 S os s 2y £az | the Nondispersion Case Given in Fig. 11. Note that
H a2+0. . ;
alz K the distribution of the experimental points is almost
i+ 1 identical to that given in Fig. 11. This implies that
i - 1 the dispersion correction does not alter the conclu=
’l 1 sions obtained without the dispersion correction.
& O =357 5 15 17 19 2 23 25 27 2 ¥
v £ (L)

121-4099

To recapitulate, the structural data obtained with and without the
dispersion correction are tabulated in "Résumé of Dispersion Correction.”

Molecular Weight
Density (g/cm?)
Coordinate of Y

Intetatoomic Distance
Y - C(A)

Interatgmic Distance
Y - Y(A)

Temperature Factor
Coefficient of Y(A?)

Temperature Factor
Coefficient of C(A?)

Mean Debye
Temperature 8 (°K)

Résumé of Dispersion Correction

YCyx (cubic)

Y,C (trigonal)

Without With
Dispersion Dispersion Without With
x = 0.48 x = 0.44 Dispersion Dispersion
94.69 94.20 189.9 No Change
4.700 4.676 * 4.650 No Change
4(a) No Change 0.2585 + 0.0003 0.2587 + 0.0003
2.558 + 0.001 No Change 2.483 + 0.003 2.486 * 0.003
3.617 + 0.002 No Change 3.402 * 0.007 3.397 + 0.007
3.617 + 0.002 3.617 * 0.002
3.904 + 0.008 3.910 + 0.008
1.85 + 0.08 1.74 + 0.08 0.98 + 0.04 0.82 + 0.04
1.85 + 0.008 1.74 £ 0.20 1.05 + 0.20 1.02 + 0.20
17025 113%5 2336 274 % 6



68

REFERENCES FOR NOTE ADDED IN PROOF

Templeton, D. H., X-ray Dispersion Effects in Crystal-structure
Determinations, Acta Cryst. 8, 842 (1955).

Cromer, D. T., Anomalous Dispersion Correction Computed for Self-consistent
Field Relativistice Dirac-Slater Functions, Acta Cryst. 18, 17 (1965).






